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DSL-Based Hardware Generation with Scala: Example Fast
Fourier Transforms and Sorting Networks

FRANÇOIS SERRE and MARKUS PÜSCHEL, Department of Computer Science, ETH Zurich

We present a hardware generator for computations with regular structure including the fast Fourier transform
(FFT), sorting networks, and others. The input of the generator is a high-level description of the algorithm;
the output is a token-based, synchronized design in the form of RTL-Verilog. Building on prior work, the
generator uses several layers of domain-specific languages (DSLs) to represent and optimize at different lev-
els of abstraction to produce a RAM- and area-efficient hardware implementation. Two of these layers and
DSLs are novel. The first one allows the use and domain-specific optimization of state-of-the-art streaming
permutations. The second DSL enables the automatic pipelining of a streaming hardware dataflow and the
synchronization of its data-independent control signals. The generator including the DSLs are implemented
in Scala, leveraging its type system, and uses concepts from lightweight modular staging (LMS) to handle
the constraints of streaming hardware. Particularly, these concepts offer genericity over hardware number
representation, including seamless switching between fixed-point arithmetic and FloPoCo generated IEEE
floating-point operators, while ensuring type-safety. We show benchmarks of generated FFTs, sorting net-
works, and Walsh-Hadamard transforms that outperform prior generators.
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1 INTRODUCTION

Many algorithms used in hardware applications in signal processing, communication, and other
domains share a common structure consisting of a network of small processing elements. The
most prominent example is the so-called butterfly network implementing a fast Fourier transform
(FFT). It consists of stages of parallel and almost identical blocks (the butterflies) that operate on
two inputs with data permutations in between (see Figure 1(a)). Many other important functions
have similar algorithms, with different blocks and different intermittent permutations. Examples
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Fig. 1. Radix-2 Pease-FFT datapaths (each from right to left) operating on 2n = 8 elements with different
types of folding [17]. In panel (a), the design is not folded and consists of three stages (each comprising
a perfect-shuffle permutation, an array of butterflies F2 and an element-wise multiplication by constants),
followed by a bit-reversal permutation. Panel (b) is horizontally folded: it implements only one instance of
this stage that processes the dataset iteratively. Panel (c) is vertically folded: the dataset is input streamed in

chunks of 2k = 4 elements (the streaming width) that enter during 2t = 2 consecutive cycles, where n = t + k .
Panel (d) combines both types of folding.

include the Walsh-Hadamard transform (WHT) [1], fast cosine and sine transforms [2], sorting
networks (SNs) [3, 4], and permutation networks [5–10].

The regular structure offers much flexibility in their hardware implementations and thus there
has been extensive work, most focusing on the FFT [11–20]. In particular, References [17, 20–
22] propose generators for FFTs and sorting networks that are capable of producing an entire
design space of implementations with different trade-offs in performance and resource consump-
tion. These generators are built as a back-end of Spiral, a generator of signal processing libraries
tuned for a specific platform [23], and operate with different algorithms represented in a domain
specific language (DSL) called SPL. They exploit different symmetries (or regularities) of these al-
gorithms to fold them temporally (iterative reuse, a given dataset is processed several times by the
same hardware components, as in Figure 1(b)), or spatially (streaming reuse; a given dataset is split
into chunks that are processed over several cycles, as in Figure 1(c)), or both (Figure 1(d)) to obtain
a space of relevant designs. The desired design is then output as RTL-Verilog.

However, the state of the art of the different components needed in these algorithms continues
to improve. As examples, FloPoCo [24] provides an open-source generator for pipelined floating-
point arithmetic with arbitrary precision, streaming implementations of linear permutations (rep-
resented as dark blue boxes in Figure 1) now achieve proven optimality in terms of latency, routing
complexity (number of multiplexers used) and memory used (total memory capacity and number
of RAM banks) [25–27], and a new architecture (Figure 2) further reduces RAM usage in some
cases by fusing permutations [28]. However, no generator to date combines these features with
the flexibility offered by References [17, 22]. One possible cause is the difficulty of programming
a generator capable of mapping a high-level design (as in Figures 1 and 2) to a concrete RTL im-
plementation. Some of the challenges are discussed next.
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Fig. 2. Radix-2 Pease-FFT dataflow operating with fused permutations.

Mismatch of hardware and software datatypes. A first difficulty, common among high-level
synthesis (HLS) tools, is the wide diversity of possible datatypes that hardware designs offer. The
precision of (unsigned or signed) integers or fixed point numbers is arbitrary, in contrast to a small
set of choices in software. The same applies to floating-point arithmetic, ranging from IEEE754 to
the space covered by FloPoCo [24], which offers variable mantissa and exponent width.

Two different evaluation times. A second issue is that a given function may need to be ei-
ther evaluated during design generation or implemented in the resulting design, or even partially
evaluated during generation and partially implemented.

For instance, the FFT involves multiplications with a set of constants, called twiddle factors. A
twiddle factor ti, j is a complex number that depends on two parameters: the index i of the element
and the index of the computation stage j (see Figure 1(a)). In the case of non-iterative designs (Fig-
ures 1(a) and 1(c)), the parameter j is known at generation time, while in iterative scenarios (Fig-
ures 1(b) and 1(d)), the design would need to implement a counter counting the number of datasets
that were already processed by the stage. Similarly, the parameter i is known at generation-time
for non-streaming designs (Figures 1(a) and 1(b)) for each different multiplier, while in streaming
designs (Figures 1(c) and 1(d)), i depends on the multiplier position, and on a timer that counts the
number of cycles elapsed since the dataset began to enter. As the computation of a twiddle factor
would typically involve a ROM containing different possible values, it is essential to exploit during
generation as much as possible the structure of i and j to reduce ROM consumption and DSP slices
in case of trivial multiplications.

A typical solution for handling this problem consists of writing and maintaining different ver-
sions for each different scenario, which is error-prone and time consuming.

Synchronization issues. The design requires pipelining to handle the frequency required by
the user. Keeping the example of twiddle factors, an inspection of different FFT algorithms shows
that many constants are 1, i (=

√
−1) or −i, which results in a trivial multiplication that does not

require pipelining. However, it is necessary in this case to add supplementary registers if another
non-trivial multiplication exists, to keep the whole dataset synchronized.

Additionally, if the twiddle factor computation is done in hardware, then it may also require
pipelining. As this computation is independent of the input to the FFT, it is possible to initiate it in
advance to avoid impacting the global latency of the design. However, this requires precise cycle
tracking to trigger the counter and the timer at the appropriate time.

Handling the latency. As some of the designs produced use a loop (Figures 1(b), 1(d), and 2),
special attention must be paid to guarantee that the latency of the inner structure is long enough
to avoid collision between the tail and the head of a given dataset. Additionally, this inner latency
determines the minimal time separating two datasets, which must be reported to the user.

Contributions. We address the above problems with a novel hardware generator for algorithms
with a regular network structure. This self-contained generator employs a systematic design lever-
aging features provided by Scala, a modern multi-paradigm language:

• We present a hardware generator for a design space of FFTs, WHTs, and variants of
Batcher-SNs. This generator is implemented in Scala [29] and leverages Scala’s facilities for
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Fig. 3. The different layers of our generator.

embedding DSLs, concepts from lightweight modular staging (LMS) [30] to perform opti-
mization at the DSL levels,and Scala’s type system to offer the flexibility and modularity
discussed above. While we focus on FFTs, WHTs, and SNs, the generator is extensible to
other algorithms with regular structure including the examples mentioned before.

• In the generator, we use two novel DSLs to facilitate streaming optimizations.
• We benchmark against prior generators, and show significant improvements in flexibility,

while keeping a comparable performance/resource trade-off.
• We provide access to our generator through a web interface at Reference [31], and provide

source code at Reference [32].

This article extends our preliminary work presented in Reference [33], which only supported
FFTs. Furthermore, we provide a detailed description of an additional layer of our generator, the
Streaming-block DSL (Section 4), and generally a much more detailed description of the actual
implementation.

2 GENERATION PIPELINE

In this article, we will refer to all functions that our generator implements as transforms. These
include the discrete Fourier transform, the Walsh-Hadamard transform, and sorting networks. Our
proposed generator receives as input the desired transform, its size (a power of two), and some
parameters that control the design space (e.g., streaming width, iterative reuse applied or not,
hardware arithmetic representation). The output is the corresponding design in the form of RTL
Verilog. The generation process consists of the three layers pictured in Figure 3. Each of these
layers employs a DSL to represent, manipulate, and optimize the algorithm at different levels of
abstraction. Each DSL is implemented as embedded DSL inside Scala, and staging is used to allow
manipulation. We first give a brief overview and then discuss the last two layers in greater detail
in subsequent sections.

2.1 SPL

The first step for generating a hardware implementation consists of choosing a suitable algorithm.
Following Reference [17], we represent these algorithms as breakdown rules that decompose a large
transformation into smaller ones. These rules are represented using SPL, a mathematical language
that represents linear algebra operations by matrices and operators on these matrices [23, 34, 35].
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Table 1. SPL Operators Used in Our Generator

Operator Description
First-order operator

DFT2n Discrete Fourier transform for input size 2n

WHT2n Walsh-Hadamard transform for input size 2n

SN2n Sorting network for 2n inputs
π (P ) Linear permutation associated with the invertible bit-matrix P [25]
Ti ,T

′
i Twiddle factors

X c
2 Configurable two-input sorter

Higher-order operator

A · B Composition of operators A and B∏
i Ai Enumerated composition of operators Ai⊕
i Ai Enumerated direct sum (parallel composition) of operators Ai

We introduce next SPL, and describe the rules we use for the different transforms we consider.
Our implementation of this DSL in Scala is similar as in Reference [36], and includes the operators
in Table 1. Higher-order operators are used to recursively construct algorithms from first-order
operators.

DFT. Computing a discrete Fourier transform (DFT) of a discrete signal of 2n elements x =
(xi )0≤i<2n ∈ C2n

amounts to multiplying it with a matrix DFT2n :

y = DFT2n ·x , where DFT2n = [ωi j ]0≤i, j<2n , with ω = e−2iπ /2n

.

In SPL, a DFT on 2n points is represented by the corresponding 2n × 2n matrix DFT2n .
An FFT algorithm as the one used in Figure 1, the constant-geometry radix-2r Pease FFT [37],

corresponds to rewriting this matrix as the following product of sparse matrices:

DFT2n = π
(
J r
n

)
·

n/r−1∏
�=0

��
�
Tn/r−�−1 · ��

�

2n−r⊕
i=1

DFT2r
��
�
· π

(
Sr

n

)��
�
. (1)

The factors in the iterative product in Equation (1) correspond to the stages in Figure 1(a). In each
step there is first a permutation π (Sr

n ) (the stride-by-2r permutation), followed by parallel but-
terflies

⊕
DFT2r , followed by twiddle factors Ti . At the end is the radix-2r -reversal permutation

π (J r
n ). The product of matrices corresponds to the composition of the corresponding steps.

The permutations are denoted with π (P ), which indicates that they are linear, i.e., that they
map linearly the binary representation of their indices (P is the matrix that represents this linear
mapping) [25, 38]. π (J r

n ) and π (Sr
n ) are, respectively, the radix-2r -reversal, and the stride-by-2r

permutation). T� is a diagonal matrix that performs element-wise complex multiplications with
the twiddle-factors,1∏

and
⊕

are, respectively, the enumerated product and direct sum:

n−1∏
i=0

Mi = M0 ·M1 . . .Mn−1, and
n−1⊕
i=0

Mi =

������
�

M0

M1

. . .

Mn−1

������
�

.

1T� =
⊕2n−r −1

i=0

⊕2r −1
j=0 ω j ·i (r �) , where ω is the principal 2n -th root of unity, and i (r �) means that the r � least significant

bits of i have been set to 0.
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Fig. 4. A column of four parallel butterflies.

Fig. 5. Radix-2 Cooley-Tukey FFT datapaths operating on 2n = 8 elements. This algorithm is used when
iterative reuse is not enabled, as the permutations involved require less resources when streamed.

For example,
⊕2n−r

i=1 DFT2r represents 2n−r parallel DFTs of size 2r each. A column of four parallel
butterflies, as in Figure 4, is therefore represented by

4⊕
i=1

DFT2 , where DFT2 =

(
1 1
1 −1

)
.

As only the twiddle factors depend on �, i.e., change in the iterative product in Equation (1), the
Pease FFT algorithm is well suited for iterative reuse. However, for designs with streaming reuse
only, or for the generation of the base case 2r -FFT, the radix-2r Cooley-Tukey FFT (see Figure 5)
is used instead, as the permutations it requires use less resources than for a Pease FFT:

DFT2n = π
(
Sn−r

n

)
· ��
�

n/r−1∏
�=0

��
�

2n−r⊕
i=1

DFT2r
��
�
·T ′� · π (Q� )��

�
· π

(
J r
n

)
, (2)

where T ′
�

is a diagonal matrix, and π (Q� ) a permutation.
WHT. The algorithms we are using to compute a WHT are similar to the one used for DFTs, but

do not include twiddle factors nor a final bit-reversal permutation. As an example, the Pease-like
WHT algorithm is expressed as

WHT2n =

n−1∏
j=0

��
�

��
�

2n−1⊕
i=1

DFT2
��
�
· π (Sn )��

�
. (3)

SN. Sorting networks (SNs) are somewhat similar to FFTs or WHTs but require a different form
of butterflies, which are two-input sorters and thus nonlinear. Thus an extension to SPL is required
as described in Reference [22] following concepts from Reference [39]. Formally, a two-input sorter
is described as X c

2 : if c = 0, it sorts the two inputs in ascending order, if c = 1 it sorts them in
descending order. With this, we can express SNs using the previous formalism. For streaming
reuse only, we use a Batcher bitonic SN [3] (see Figure 6):

SN2n =

n−2∏
j=0

��
�

��
�

2n−1−1⊕
i=0

X 0
2
��
�
·

n−i−2∏
�=0

��
�
π (P� ) · ��

�

2n−1−1⊕
i=0

X 0
2
��
�

��
�
· π (Q j )

��
�
·

2n−1−1⊕
i=0

X 0
2 . (4)
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Fig. 6. Batcher bitonic sorting network [3] operating on 2n = 8 elements. This design corresponds to the
SN1 architecture in Reference [22].

Fig. 7. Constant-geometry sorting network [4] operating on 2n = 8 elements. This design loosely corre-
sponds to the SN5 architecture in Reference [22].

This corresponds to the architecture SN1 in Reference [22].
When iterative reuse is desired, a Pease-like network is used [4]:

SN2n =
��
�

2n−1⊕
i=1

X 0
2
��
�
·

n2−n−3∏
j=0

��
�
π (Sn ) · ��

�

2n−1⊕
i=1

X
f (i, j )
2

��
�

��
�
, where f is a binary function. (5)

This second algorithm corresponds to the architecture SN5 of Reference [22], with the following
improvements:

• The first n − 1 stages are removed, as these correspond to a fixed permutation of the in-
puts, for which the order does not matter. This allows an increase of the throughput of the
implementations.

• In Reference [22], X c
2 had an additional pass-through configuration. We change the stages

that used this mode such that the sorters perform useless comparisons instead (by copying
the configuration of the stage located n places later). Therefore, we only use X c

2 as a sorter
or as an inverted sorter, thus reducing the complexity of the implementation.

• When folded for iterative reuse, a loop with an early termination (similar to the structure
used in Reference [28] when fusing permutations) allows to simultaneously implement a
single stage of sorters while performing only the necessary number of permutations (see
Figure 7(b)).

2.2 Streaming-block DSL

In the second step of the generator (Figure 3), the SPL expression is formally folded according
to the streaming width, i.e., the number of elements of the dataset that the design would be able
to handle in each cycle. The DSL used thus expands SPL to include the streaming width (sim-
ilar to the so-called Hardware-SPL in Reference [17]) but also to include the streaming blocks
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Fig. 8. An implementation of a linear streaming permutation with a streaming width of 4 using the method
in Reference [25]. It consists of one stage of RAM banks and two blocks of two stages of switches each.

Table 2. Streaming Blocks Used in the Streaming-block DSL

Operator Description SPL correspondence
First-order operator⊕

DFT2 Butterfly array (add and substract its
two inputs)

⊕
DFT2

Ti ,T
′
i Twiddle factors Ti ,T

′
i

X c
2 Configurable two-input sorter X c

2

πi (P0, . . . , P� ) Array of multiplexers π

(
It

Pi

)

σi (v0, . . . ,v� ) Single array of switches π
�����
�

It
1
. . .

vT
i 1

�����
�

σ ′i ((u0,v0), . . . , (u� ,v� )) Double array of switches π

���������
�

It
1
. . .

vT
i 1

uT
i 1

���������
�

τi ((A0,B0), . . . , (A� ,B� )) Array of RAM banks π

(
Ai Bi

Ik

)

Higher-order operator

A0 · A2 · · ·A� Composition
∏�

i=0 Ai

(without iterative reuse)∏
i Ai Composition with iterative reuse

∏�
i=0 Ai

(A is implemented only once)∏�
i (AiBi ) Composition with iterative reuse B�

∏�−1
i=0 (AiBi )

and early termination

needed to represent the necessary datapaths for the streaming permutations from References [25,
28] (see Figure 8 and Table 2). These consist of arrays of multiplexers, switches and RAM banks.
Additionally, higher order operators reflect the use of iterative reuse, or iterative reuse with early
termination.

During this stage, a set of rewriting rules is used to simplify the streaming blocks, particularly
in the case of a fused permutation. As an example, a radix-2 Pease DFT on eight elements (Equa-
tion (1)), folded with a streaming width of four ports using iterative reuse with fused permutation
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Fig. 9. Design of Figure 2 expressed using the streaming block DSL. The necessary streaming permutation is
expanded into switches and RAM banks (dark blue rectangles). The optimization here “unrolls” some parts
of the permutation to remove an array of multiplexer. Additionally, two arrays of switches were grouped for
later mapping to 4-to-1 multiplexers. These optimizations increase the throughput and reduce the area of
the final design.

would be represented in the streaming block DSL by

3∏
i=0

�
�
T2−i ·

4⊕
�=1

DFT2 · πi (I2, S2, S2, S2) · σi ((1), (0), (0), (0)) · π (S2) · σi ((0), (1), (1), (1))

· π (S2) · τi (((1), (0 1)), ((1), (1 0)), ((1), (1 0)), ((1), (1 0))) · π (S2)

· σi ((1), (0), (0), (0)) · π (S2) · σi ((0), (1), (1), (1)) · π (S2)�
�
, (6)

which corresponds to the dataflow pictured in Figure 9(a).
In this expression, the array of multiplexers πi (I2, S2, S2, S2) does not perform anything during

the last iteration. It is therefore interesting to “push” it after the early termination of the loop,
as it can be implemented using only a rewiring π (S2). The array of switches that comes next,
σi ((1), (0), (0), (0)), does not permute anything during the first three iterations of the loop. It can
be therefore “unrolled” into a non-parameterized array of switches σ ((1)), thus saving logic and
latency in the loop and therefore increasing throughput. At this point, the expression becomes

σ ((1)) ·
3∏

i=0

�
�
T2−i ·

4⊕
�=1

DFT2 · π (S2) · π (S2) · σi ((0), (1), (1), (1)) · π (S2)

· τi (((1), (0 1)), ((1), (1 0)), ((1), (1 0)), ((1), (1 0))) · π (S2)

· σi ((1), (0), (0), (0)) · π (S2) · σi ((0), (1), (1), (1)) · π (S2)�
�
.
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Continuing these optimizations, and regrouping the two rightmost single arrays of switches
finally yields the expression

σ ((1)) ·
3∏

i=0

�
�
T2−i ·

4⊕
�=1

DFT2 · σ ((1)) · π (S2)

· τi (((1), (0 1)), ((1), (1 0)), ((1), (1 0)), ((1), (1 0))) · π (S2)

· σ ′i (((1), (0)), ((0), (1)), ((0), (1)), ((0), (1))) · π (S2)�
�
, (7)

pictured in Figure 9(b).

2.3 Streaming-RTL DSL

In the final stage, the streaming blocks are transformed into a dependency graph where each node,
called a signal, represents a hardware operator that outputs one value per cycle. A signal may have
zero (constant signals, inputs, timers and counters), one (flip/flop registers used for pipelining), or
more parent signals (see Table 3). In the case of streaming reuse, this graph may contain loops.

The graph is constructed and represented using a Streaming-RTL DSL. Hardware datatypes,
pipelining decisions and synchronization issues are mostly abstracted from this language. As an
example, the implementation of the streaming block for the twiddles Tj can be written within a
few lines, and works for every folding scenario and hardware datatype:

As can be seen, only a few elements in the body of this function (Timer, Unsigned) may indi-
cate that this code represents a low-level hardware architecture. This improves its readability and
therefore its maintainability. However, all signals implicitly carry an underlying hardware type
(including the corresponding size in bits), and timing information. All operations are bit- and cycle-
accurate, and software and hardware type-safety is ensured. This DSL and its implementation are
detailed in the next section.

Once constructed and optimized, the resulting graph is translated to a Verilog file.
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Table 3. Example of Nodes (Signals) Used in the Streaming-RTL DSL and Corresponding Syntax

Operator Description Example
Constant signal

value is a numerical value.
Const(value) Constant signal Const(5.3)
Register signal

input is a signal.
Register(input) Flip/flop register input.register()
Arithmetic signals

lhs and rhs are signals of the same type.
Plus(lhs, rhs) Sum of the operands lhs + rhs
Minus(lhs, rhs) Difference of the operands lhs - rhs
Times(lhs, rhs) Product of the operands lhs * rhs
And(lhs, rhs) Binary AND of the operands lhs & rhs
Xor(lhs, rhs) Binary XOR of the operands lhs ∧ rhs
Memory signals

content is an indexed sequence of numerical values,
address is an unsigned signal,
input is a signal,
ram is a RAMw signal.
ROM(content, address) ROM tabulating content Vector(1.5, 18.2)(address)
RAMw(input, address) Write port of a RAM val r = RAM(in, address1)
RAMr(ram, address) Read port of a RAM r(address2)
Multiplexer signal

content is an indexed sequence of signals of the same type,
address is an unsigned signal.
Mux(content, address) Multiplexer Vector(rhs, lhs)(address)
Bus manipulation signals

lhs and rhs are signals of the same type,
range is a range of integers.
Cons(lhs, rhs) Binary concatenation lhs ++ rhs
Tap(lhs, range) Extraction of a selection of bits lhs(range)
Synchronization signals (provided by streaming blocks)
size is an integer.
Timer(size) Number of cycles since Timer(8)

the last dataset entered
Counter(size) Number of datasets that Counter(4)

have been processed

3 A DSL FOR “STREAMING-RTL”

Our streaming-RTL DSL (see Figure 3) is used to construct from a streaming-block level represen-
tation of an algorithm a dependency graph that represents the final circuit. In this graph, the nodes
(signals) represent hardware operators, and the edges the dependencies between these signals. The
DSL offers the following features:

• The nodes (signals) of the graph are manipulated exactly as the values they would represent
in a regular Scala program. Only their type changes.
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• The language provides genericity over the actual hardware datatype and precision. How-
ever, the datatype can be made explicit, offering bit-accurate control.

• Pipelining and synchronization of data-independent control is performed implicitly, but
timing information and manual pipelining remains available.

We discuss next the implementation of these abstractions, using the features offered by the Scala
type system.

3.1 Staging and LMS

The implementation of our DSL uses the concept of staging, in particular as done in LMS [30], but
using our own implementation. Staging allows to distinguish those parts of the computation to be
evaluated at generation time and those that will be implemented in hardware via a type annota-
tion. Specifically, staging is done by changing a type T to the type Sig[T]; the latter means that
computations on this type will be delayed, and may become part of the hardware implementation.

For example, in the following code, the first line defines a function f1 that yields the sum of its
parameters (x and y of type Double) augmented by 18. The return type (Double) is inferred by the
compiler. In the second line however, f2 returns an expression tree representing the computation
on symbolic inputs.

This tree can then be translated (unparsed) to RTL-Verilog, yielding an implementation of two
adders (adding two signals and an immediate).

This behavior is obtained through the class Sig[T], whose instances represent the nodes in an
expression tree:

This class takes as a type parameter the type T of the expression it represents. This type is ex-
pected to come along with a hardware representation, provided as a type class HW (see Section 3.2).
Additionally, each node is expected to provide timing information through the field delay (see
Section 3.3).

The different types of computation are represented by a class that inherits from Sig:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 13, No. 1, Article 1. Pub. date: December 2019.



DSL-based Hardware Generation with Scala 1:13

Each instance Sig[T] offers (lifts) the same operators as a regular instance of T would (see
Section 3.4). These lifted operators return the corresponding node in the form of another instance
of Sig.

3.2 Abstraction Over Hardware Datatypes

Type classes [40, 41] are a form of static ad hoc polymorphism, that, contrary to inheritance, allows
to retroactively add functionality to existing data types. For instance, the following function f3 is
generic in the type T of its parameters, but imposes that this type is numeric:

In Scala, type classes are implemented using regular classes: f3 expects a third implicit argument
of type Numeric[T] containing, among other, the definition of the operator * for two Ts.

Following the concept of abstraction over data representation from Reference [36], instances of
Sig[T] (signals of T) carry their underlying hardware representation in the form of a type class
HW[T]:

Not only does this type class provide an additional method getBits that returns the bit represen-
tation of a given T, but it carries as meta-information the size in bits of the representation. Concrete
hardware representations are instances of classes derived from HW[T]:

A Scala Int could therefore be represented as a signed or unsigned integer of a given size, and a
Scala Double can be represented using a fixed-point representation, a FloPoCo number2 or an IEEE
754 floating-point representation. This information is passed to children nodes, and is used for the
implementation of the lifted operators and for the representation of constants in the generated
code.

As an example, depending on the underlying hardware type of its parameters, the previous
example f2 would seamlessly

• use fixed-point adders and represent 18 as a fixed-point immediate, or
• use FloPoCo generated floating-point adders and represent 18 with the corresponding

FloPoCo binary representation, or

2The FloPoCo generator is called upon instantiation of the corresponding datatype class to generate the different arithmetic
operators. The result of this generation is then parsed to extract the latency of these operators.
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• implement a conversion from an IEEE floating-point signal to a FloPoCo representation, im-
plement the FloPoCo adder, and implement the conversion back to an IEEE representation.

3.3 Synchronization

Each signal has a delay field that represents the time needed for this signal to output a valid value.
It is used to check if two operands are synchronized, and, if it is not the case, to suitably delay one
of them using registers.

A delay consists of an integer representing a number of cycles, and a timeline indicating to which
“reference frame” this delay belongs. This timeline can be

• the primary timeline, referring to the number of cycles elapsed since the inputs arrived in
the module,

• a loop timeline, referring to the number of cycles elapsed since a dataset entered within a
loop, or

• a floating timeline, used by data-independent signals awaiting to be “synchronized” with
another timeline.

As an example, a Register would have the same delay as its input with a cycle number incre-
mented by one, while an input signal would have a delay of 0 on the primary timeline.

Loop timelines. In the case of iterative reuse, the streaming product (the streaming block that
creates the loop and the multiplexer in Figures 1(b) and 1(d)) creates a new loop timeline, and
implements its inner expression using this timeline. The corresponding latency is then measured
using the maximal delay of the signals that are returned. This information is then used during a
second unparsing of the inner expression, where a possible lack of latency is compensated by a
FIFO, or an increase of latency of a potential inner temporal permutation. The streaming product
then presents its outputs using the same timeline as its inputs, delayed accordingly.

Floating timelines. In our generator, all data-independent control signals rely on counters (that
count the number of datasets that have passed) and on timers (that count the number of cycles
elapsed since the beginning of the current dataset). To ensure that such control signals become
available at the correct instant, each time a new counter or timer is declared, a corresponding
floating timeline is created. All data-independent operations performed are then pipelined using
this timeline. However, when a signal with a floating timeline and a signal with an external timeline
need to be synchronized, a new floating delay node is inserted with the expected delay.

As an example, we consider the following function f4:

This function creates a 3-bit timer, and adds the constant 3 to it. This operation implicitly adds a
pipelining register, yielding a signal t with a delay of 1 on the floating timeline associated with the
timer. The input signal x is then xored with t. As these two signals are associated with different
timelines, a floating delay signal depending on t is created with the same delay member as x, and
f3 finally returns a signal representing a XOR of x and the floating delay signal.

After the graph construction, the floating timeline is synchronized with the other timeline such
that all floating delays can be implemented using the minimal number of registers. In particular,
this ensures that data-dependent signals never have to be uselessly delayed. In our example, the
floating timeline is synchronized such that the floating delay is implemented with a direct assign-
ment. Thus, a delay of one cycle on the floating timeline corresponds to the delay of x.
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To prevent nodes of a floating timeline from being synchronized with different, incompatible
timelines, and to avoid circular dependencies between floating timelines, the first time a node of
a floating timeline is synchronized with a node from another timeline, the floating timeline is
marked as “being in translation” with this other timeline, and an error is thrown if a node is later
synchronized with a third timeline. With this relation, when the graph is built, timelines form a
set of trees, rooted by the primary and loop timelines. Floating timelines are then synchronized
starting from the roots.

Synchronization tokens. When the graph is unparsed, token synchronization signals are gen-
erated to trigger the different counters and timers. Tokens for loop timelines are generated by
“ORing” tokens of the primary timeline. As the maximal throughput of the design is known at this
time, tokens of the primary timeline can be generated using consecutive resettable timers instead
of a resettable shift-register.

In our previous example, the timer declared within f3 receives its token one cycle before x
becomes available, ensuring that t is computed at the right time.

3.4 Smart Constructors

Lifted operators are provided using implicit classes, which make it possible to add a posteriori
methods and operators to existing objects.

For instance, the following class provides a + operator to any Sig[T], when T is a numeric type:

Here, the operator first checks that the two operands have the same hardware type (ensuring type-
safety). It then synchronizes them, and handles particular cases (if the two operands are constants,
or if one of them is the constant zero). Finally, it creates a new Plus signal, according to the hard-
ware datatype, and adds pipelining registers (in the case of a FloPoCo operator, the signal PlusFPC
already takes into account the latency of the operator. A final register is added. For signed, un-
signed integers and fixed-point representations, the pipeline has always a depth of one cycle. It
would however be possible to adapt it to the size of the operands, the target architecture or the
target frequency. In case of an IEEE representation, the pipelining is handled by the underlying
call to the FloPoCo operator.).

These smart constructors are responsible for major optimizations. As an example, the construc-
tor of ROM signals (implemented by adding a new apply method on indexed sequences of T)
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checks every bit of the control signal, and returns a smaller ROM in the case where one of them
is constant. Particularly, it would return a constant if the control signal is constant, thus guaran-
teeing an efficient implementation of the twiddle stageTj , even in non-streaming or non-iterative
cases.

4 STREAMING-BLOCK DSL

The Streaming-block DSL is an intermediate language between SPL and the Streaming-RTL DSL
(See Figure 3). It supports high-level optimizations relevant for streaming, i.e., optimizations that
take place once an algorithm has been “folded” according to a given streaming width.

4.1 Streaming Blocks

Each streaming block represents a hardware module that has the same number (streamingWidth)
of inputs and outputs of the same hardware type (HW[T]), and that performs an operation on a
dataset of size size. Streaming blocks are comparable to SPL elements augmented with a streaming
width information, and are instances of classes derived from StreamingBlock:

Streaming blocks are expected to override a virtual method implement that constructs the final
circuit using the streaming-RTL DSL.3 An operator * allows the composition of blocks as explained
in Section 4.2 below.

As an example, an array of butterflies (corresponding to the SPL expression
⊕

DFT2) would be
implemented as follows:

4.2 Higher-Order Blocks

Composition of blocks is achieved through the block Product:

3The implementation adds an option to add latency and returns the minimal number of cycles (gap) that the circuit can
handle between datasets.
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Fig. 10. Permutation streaming blocks, from Reference [28], here for a streaming width of 2k = 4. Panel (a)
can pass any temporal permutation; panels (b) and (c) are used for spatial permutations.

A companion object of Product contains a smart constructor (this is the one called by the op-
erator * in StreamingBlock), along with a higher-order function that implements the block cor-
responding to the SPL expression

∏limit
j=0 f (j ).

Note that the higher-order function expects a function that returns a block, and that takes an
integer signal as a parameter (and not directly an integer). This allows us to have another block,
ItProduct with the same interface, but that produces a loop for iterative reuse (by implementing
a multiplexer, creating a new loop timeline, and calling f with a Counter as a parameter).

The Streaming-block DSL does not directly have any operator corresponding to the direct sum
of SPL:

⊕
j f (j ). Before folding, the SPL expression must therefore have all the direct sums fully

distributed. Then, the remaining direct sums must be handled within the streaming blocks them-
selves, as it is the case with ButterflyArray.

4.3 Permutation Blocks

Apart from the direct sum operator, permutations are the only SPL operators that do not have a
direct equivalent in the Streaming-block DSL. Only two types of permutations are directly imple-
mentable as streaming blocks:

• Spatial permutations: these are permutations that permute elements only within the same
cycle. They can be implemented using switches (Figure 10(c)) or multiplexers (Figure 10(b)).

• Temporal permutations: these permutations permute elements only between cycles, but stay
on the same port number. They can be implemented using an array of memory banks as in
Figure 10(a).

During the folding operation, general permutations are decomposed into these basic types (as
depicted in Figure 8) using the algorithms described in References [25, 28].
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Fig. 11. Resources used by different FFTs (Equation (2)) in different configurations on complex data using
2 × 32 bits IEEE754 floating-point.

4.4 Optimizations

The optimizations taking place at this step mainly concern streaming permutations and iterative
reuse loops that have an early termination. They are described in greater detail in Reference [28].
For instance, a streaming permutation block within an iterative loop may be unrolled under certain
conditions, thus reducing the global number of multiplexers used within the whole design, or
increasing the throughput of the design. Another optimization consists of fusing two consecutive
arrays of 2-input switches into an array of 4-input switches, which can improve the resource used
on some FPGA architectures. Figure 9 shows a case where these two optimizations were performed.

5 RESULTS

To validate the designs produced by our generator, we benchmarked them against the equivalent
circuits generated with Reference [17]. All designs were synthesized using Vivado 2018.1, targeting
a Virtex7 xc7vx1140 FPGA. The floating-point operators used in our designs were generated using
FloPoCo 4.1.2, targeting a 700MHz Virtex6 platform.

Figures 11, 12, and 13 show results after place-and-route for a variety of transforms, algorithms,
hardware datatypes and foldings. Each of these presents, for a given transform size, the resources
used in terms of logic slices and memory obtained for our design and the corresponding design
from [17] or [22]. Cooley-Tukey FFTs and WHTs (Figures 11(a), 11(d), and 12) and Stone SNs (Fig-
ures 13(a) and 13(c)) are implemented using only streaming reuse. Batcher SNs (Figures 13(b) and
13(d)) use both streaming and iterative reuse. Pease FFTs (Figures 11(b), 11(c), 11(e), and 11(f)) use
streaming and iterative reuse with fused permutations, as described in Reference [28].

Figures 11(e) and 11(f) also show a comparison with the designs obtained using Xilinx IP gen-
erator Fast Fourier Transform 9.1. The parameters were set to resemble as much as possible our
architecture. A radix-2 Burst IO Lite architecture is used with four channels (in Figure 11(e)), and
a radix-4 Burst IO is used with eight channels (in Figure 11(f)), in each case with a natural output
ordering, and using 32 bit fixed point representation for both inputs and phase factors. However,
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Fig. 12. Resources used by a radix-2 Cooley-Tukey WHTs (Equation (3)), with a streaming width of 8 on
complex data using 2 × 32bits fixed-point.

Fig. 13. Resources used by different bitonic sorting networks (Equation (4)), with different streaming con-
figuration on complex data using 2 × 32bits fixed-point.

as neither floating point computation nor the streaming IO architecture are available when using
multiple channels, no comparison can be made for logic consumption, nor for the Cooley-Tukey
architecture.

All our designs were generated with sufficient pipelining to reach the same frequencies as Ref-
erence [17] or Reference [22] (around 400MHz). The throughput of these designs are therefore the
same. Additionally, designs requiring complex multiplications (Figure 11) use an algorithm that
yield the same number of DSP slices as Reference [17].
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We observe that the logic area consumption slightly increases. The gain obtained using FloPoCo
for the arithmetic part and the use of 4-input multiplexers is counter-balanced by the additional
logic needed to implement memory conflict avoidance as described in Reference [25].

On the other side, the number of BRAM tiles required is lower in average with our generator.
This is a direct consequence of the streaming permutations being implemented with Reference
[25]. As it does not use double buffering, the capacity required to implement streaming permuta-
tions is halved. However, this reflects on the number of BRAMs only when the double buffer does
not fit into a single BRAM, that is, for large sizes ofn (n > 10 in Figure 11 andn > 9 in Figure 13(c)).
In addition, in the case of FFTs with iterative reuse (Figures 11(e) and 11(f)), the stride permutation
and the bit-reversal are fused, allowing to halve the number of BRAMs used for streaming permu-
tations. However, these techniques do not affect the number of RAM slices used as ROMs to store
the twiddle factors. Finally, both the designs we propose and those generated using [17] require
significantly fewer RAMs than Xilinx Fast Fourier transform IP cores.

In summary, our generator produces designs that use an equal amount or less memory than
Reference [17] or Reference [22], particularly for large sizes, for the same number of DSP blocks,
and for a comparable area consumption. Our generator is thus able to improve the state of the art
for important parts of the design space of the considered transforms, and yields new Pareto optima.
Benchmarks for other designs are available in Reference [28], which uses the same generator.

6 LIMITATIONS AND RELATED WORK

We compare to related work and discuss limitations.

6.1 Hardware DSLs Implemented in Scala

The DSL we propose is specifically crafted for the generation of streaming Fourier transforms
and sorting networks on FPGAs, and provides only the primitives and the amount of abstraction
needed for this purpose. This differentiates it from lower level hardware description languages
written in Scala. For instance, Chisel [42] can represent a much wider variety of hardware designs,
but requires the pipelining registers to be manually added. Targeting dataflow hardware, DFiant
[43] proposes a dependency-driven automatic pipelining similar to ours, but does not seem to
support automatic synchronization of data-independent controls. It uses literal types to expose
the hardware datatype and precision to the user, thus enforcing type safety at compile-time. In
our case, the hardware datatype is abstracted (provided via a type class), and hardware type safety
is only ensured at generation time. However, high-level synthesis tools [44, 45] would offer even
higher abstractions, up to the dataset level, but would not allow the user to program at the port-
level, thus making the implementation of our permutation streaming blocks difficult.

LMS [30] itself not only provides staging, but offers a tool chain to implement and compile DSLs.
Particularly, it grants automatic common subexpression elimination during the construction of
the dependency graph. However, in our case, floating timelines reduce the efficiency of such an
optimization during the graph construction, and our tests have shown that synthesis software
such as Vivado already provide it, thus limiting the use of implementing it. LMS provides as well a
facility to manipulate the generated graph, but as ours already includes timing information, these
manipulations are limited to timing invariant ones (fusing ROMs that contain identical values for
instance), for which a direct implementation is possible. The main optimizations in our graph are
made during its generation, using smart constructors.

The pipeline proposed in Reference [46] to generate matrix operations illustrates the capability
of LMS to target hardware. It shares many similarities with ours, particularly its use of LMS and
FloPoCo. However, a significant part of the final RTL design is outsourced to the external back-end
LegUp [47].
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6.2 Hardware Generator for FFTs

Our generator only handles the generation of power-of-two-sized FFTs, whereas Reference [17]
covers a larger set of sizes that can be factored into small primes and additional transforms closely
related to FFTs. An according extension of our generator should be relatively straightforward. Note
that Reference [17] works as a back-end of Spiral [23], a generator written on a modified version
of the GAP computer algebra system, thus requiring high skills for its development.

SPL and Spiral have as well been implemented and enhanced in Haskell [48] and in Scala [49] to
produce efficient FFT implementations in C. A VHDL back-end for this compiler is being developed
[48].

6.3 Hardware Generator for Sorting Networks

The work in References [21, 22] presents a generator for streaming sorting networks, and we
have shown how our generator outperform its RAM consumption for the algorithms we support.
However, References [21, 22] cover a larger space of algorithms (called SN2–4), and was originally
targeting (and thus optimized for) a platform (Xilinx Virtex 5) older than the one we used for our
benchmarks (Xilinx Virtex 7).

Sorting is a classic topic in computer science [3, 50], and many high-performance sorting net-
works have been manually implemented on FPGAs, using two-input sorters [51, 52] or using other
basis elements like linear sorters [53].

7 CONCLUSION

The overall theme in our work is the principled design of domain-specific hardware generators
using state-of-the-art languages and language features. This article followed this theme with the
design and implementation of a generator for streaming FFTs and sorting networks inside Scala,
using embedded DSLs and the concept of staging. Specifically, our generator employs a pipeline of
three abstraction levels, corresponding to three levels of DSLs. Two of them, the streaming-block
DSL and the streaming-RTL DSL are novel and were specifically designed to include state-of-the-
art components and enable the transformations and optimizations needed in these transforms.
The produced designs improve over prior work on memory usage. The generator should be easily
extendable to other DSP components related to FFTs. A web version of our generator is available
at Reference [31] and its source code is available at Reference [32].
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