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1. Introduction

Given is a non-singular matrix P ∈ GLm+n(K) over a field K. We partition P as

P =
(
P1 P2
P3 P4

)
, such that P1 is m×m.

We denote the ranks of the submatrices with pi = rkPi, i = 1, 2, 3, 4. Matrices are 
denoted with capital letters and vector spaces with calligraphic letters.

If P1 is non-singular, then a block Gaussian elimination uniquely decomposes P into 
the form

P =
(
Im
L In

)(
C1 C2

C4

)
, (1)

where Im denotes the m × m identity matrix. The rank of L = P3P
−1
1 is equal to 

p3, and C4 is the Schur complement of P1. Conversely, if such a decomposition exists 
for P , then P1 is non-singular. This block LU decomposition has several applications 
including computing the inverse of P [1], solving linear systems [2], and in the theory of 
displacement structure [3]. The Schur complement is also used in statistics, probability 
and numerical analysis [4,5].

Analogously, the following decomposition exists if and only if P4 is non-singular:

P =
(
C1 C2

C4

)(
Im
R In

)
. (2)

This decomposition is again unique, and the rank of R is p3.
In this article, we release the restrictions on P4 and P1 and propose the following 

decomposition for a general P ∈ GLm+n(K):

P =
(
Im
L In

)(
C1 C2

C4

)(
Im
R In

)
, (3)

where in addition we want the three factors to be “as block-diagonal as possible,” i.e., 
that rkL + rkC2 + rkR is minimal.

1.1. Lower bounds

The following theorem provides bounds on the ranks of such a decomposition:

Theorem 1. If a decomposition (3) exists for P ∈ GLm+n(K), it satisfies

rkC2 = p2, (4)

rkL ≥ n− p4, (5)
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Fig. 1. Possible ranks for L and R. On the left graph, p3 < m + n − p4 − p1. On the right graph, p3 >
m + n − p4 − p1. The dot shows the decomposition provided by Theorem 2.

rkR ≥ m− p1, (6)

rkR + rkL ≥ p3. (7)

In particular, the rank of C2 is fixed and we have

rkR + rkL ≥ max(p3, n + m− p4 − p1). (8)

We will prove this theorem in Section 4. Next, we assert that these bounds are sharp.

1.2. Optimal solution

The following theorem shows that the inequality (8) is sharp:

Theorem 2. If P ∈ GLm+n(K), then there exists a decomposition (3) that satisfies

rkR + rkL = max(p3, n + m− p4 − p1) and

rkL = n− p4.

Additionally, such a decomposition can be computed with O((m + n)3) arithmetic oper-
ations.

We prove this theorem in Section 5 when p3 ≤ m + n − p4 − p1, and in Section 6 for 
the case p3 > m + n − p4 − p1. In both cases, the proof is constructive and we provide 
a corresponding algorithm (Algorithms 3 and 4). Theorem 2 and the corresponding 
algorithms are the main contributions of this article.

Two cases. As illustrated in Fig. 1, two different cases appear from inequality (8). If 
p3 ≤ m + n − p4 − p1, bound (7) is not restrictive, and the optimal pair (rkL, rkR) is 
unique and equals (n −p4, m −p1). In the other case, where p3 > m +n −p4 −p1, bound 
(7) becomes restrictive and several optimal pairs (rkL, rkR) exist.
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Example. As a simple example we consider the special case

P =
(

P2
P3

)
, with n = m.

In this case P3, P2 are non-singular and neither (1) nor (2) exists. Theorem 1 gives a 
lower bound of rkR + rkL ≥ 2n, which implies that both R and L have full rank. 
Straightforward computation shows that for any non-singular L,

P =
(
In
L In

)(
L−1P3 P2

−LP2

)(
In

−(LP2)−1P3 In

)

is an optimal solution. This also shows that the optimal decomposition (3) is in general 
not unique.

1.3. Flexibility

The following theorem adds flexibility to Theorem 2 and shows that a decomposition 
exists for any Pareto-optimal pair of non-diagonal ranks that satisfies the bounds of 
Theorem 1:

Theorem 3. If P ∈ GLm+n(K) and (l, r) ∈ N
2 satisfies l ≥ n − p4, r ≥ m − p1, and

r + l = max(p3, n + m− p4 − p1),

then P has a decomposition (3) with rkL = l and rkR = r.

In the case where p3 ≤ m + n − p4 − p1, the decomposition produced by Theorem 2
has already the unique optimal pair (rkL, rkR) = (n − p4, m − p1). In the other case, 
we will provide a method in Section 7 to trade between the rank of R and the rank of L, 
until bound (6) is reached. By iterating this method over the decomposition obtained in 
Theorem 2, decompositions with various rank tradeoffs can be built.

Therefore, it is possible to build decomposition (3) for any pair (rkL, rkR) that is a 
Pareto optimum of the given set of bounds. As a consequence, if f : N2 → R is weakly 
increasing in both of its arguments, it is possible to find a decomposition that minimizes 
f(rkL, rkR). Examples include min(rkL, rkR), max(rkL, rkR), rkL + rkR, rkL · rkR
or 

√
rk2 L + rk2 R.

Generalization of block LU factorization. In the case where P4 is non-singular, Theo-
rem 2 provides a decomposition that satisfies rkL = 0. In other words, it reduces to the 
decomposition (2). Using Theorem 3, we can obtain a similar result in the case where 
P1 is non-singular. Since in this case m − p1 = 0, it is possible to choose r = 0, and thus 
obtain the decomposition (1).



118 F. Serre, M. Püschel / Linear Algebra and its Applications 509 (2016) 114–142
1.4. Equivalent formulations

Lemma 1. The following decomposition is equivalent to decomposition (3), with analogous 
constraints for the non-diagonal ranks:

P =
(
Im
L3 L4

)(
C1 C2

In

)(
Im
R3 R4

)
. (9)

In this case, the minimization of the non-diagonal ranks is exactly the same problem as 
in (3). However, an additional degree of freedom appears: any non-singular n ×n matrix 
can be chosen for either L4 or R4.

It is also possible to decompose P into two matrices, one with a non-singular leading 
principal submatrix L1 and the other one with a non-singular lower principal submatrix 
R4:

P =
(
L1 L2
L3 L4

)(
R1 R2
R3 R4

)
. (10)

Once again, the minimization of rkL3 + rkR3 is the same problem as in (3). The two 
other non-diagonal blocks satisfy rkL2 + rkR2 ≥ p2.

Proof. The lower non-diagonal ranks are invariant through the following steps:
(3) ⇒ (9). If P has a decomposition (3), a straightforward computation shows that

P =
(
Im
L C4

)(
C1 C2

In

)(
Im
R In

)
,

which has the form of decomposition (9).
(9) ⇒ (10). If P has a decomposition (9), the multiplication of the two left factors 

leads to formulation (10). In fact, L1 = C1 and R4 are both non-singular.
(10) ⇒ (3). If P has a decomposition (10), then using (1) on the left factor, and (2) on 

the right factor, and multiplying the two central matrices leads to formulation (3). �
1.5. Related work

Schur complement. Several efforts have been made to adapt the definition of Schur 
complement in the case of general P1 and P4. For instance, it is possible to define 
an indexed Schur complement of another non-singular principal submatrix [4], or use 
pseudo-inverses [6] for matrix inversion algorithms.

Alternative block decompositions. A common way to handle the case where P1 is 
singular is to use a permutation matrix B that reorders the columns of P such that the 
new principal upper submatrix is non-singular [4]. Decomposition (1) then becomes

P = PBBT =
(
Im
L I

)(
C1 C2

C

)
.BT
n 4
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Fig. 2. Dataflow of a Pease FFT on 16 points from right (input) to left (output). Computing stages, consisting 
of DFTs on two points and pointwise multiplications (not shown), alternate with permutations.

However, B needs to swap columns with index ≥ m; thus BT does not have the required 
form considered in our work.

One can modify the above idea to choose B such that B−1 has the shape required by 
decomposition (3):

P =
(
P1 P2
P3 P4

)(
Im
−R In

)(
Im
R In

)

=
(
P1 −RP2 P2
P3 −RP4 P4

)(
Im
R In

)
.

Then the problem is to design R such that P1 −RP2 is non-singular and rk(P3 −RP4) +
rkR is minimal. This basic idea is used in [7], where, however, only rkR is minimized, 
which, in general, does not produce optimal solutions for the problem considered here.

Finally, our decomposition also shares patterns with a block Cholesky decomposition, 
or the Block LDL decomposition, in the sense that they involve block uni-triangular 
matrices. However, the requirements on P and the expectations on the decomposition 
are different.

2. Application: optimal circuits for streaming permutations

The original motivation for considering our decomposition (3) was an important ap-
plication in the domain of hardware design. Many algorithms in signal processing and 
communication consist of alternating computation and reordering (permutation) stages. 
Typical examples include fast Fourier transforms [8]; one example (a so-called Pease 
FFT) is shown in Fig. 2 for 16 data points. When mapped to hardware, permutations 
could become simple wires. However, usually, the data is not available in one cycle, 
but streamed in chunks over several cycles. Implementing such a “streaming” permu-
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tation in this scenario on an application-specific integrated circuit (ASIC) or on a field 
programmable gate array (FPGA) becomes complex, as it now requires both logic and 
memory [9,7,10]. It turns out that for an important subclass of permutations called “lin-
ear,” the design of an optimal circuit (i.e., one with minimal logic) is equivalent to solving 
(3) in the field F2.

Next, we provide a few more details on this application starting with the necessary 
background information. However, we only provide a sketch; a more complete treatment 
can be found in [10] and in [7].

2.1. Linear permutations

For 0 ≤ i < 2m+n, we denote with ib the associated (bit) vector in Fm+n
2 that contains 

the radix-2 digits of i, with the most significant digit on top. For instance, for m +n = 4, 
we have

12b =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ and 7b =

⎛
⎜⎝

0
1
1
1

⎞
⎟⎠ .

Any invertible (m + n) × (m + n) matrix P over F2 induces a permutation π(P ) on 
{0, . . . , 2m+n − 1} that maps i to j, where jb = P · ib.

For example, if we define

Vm+n =

⎛
⎝1

...
. . .

1 1

⎞
⎠ ,

then π(V3) is the mapping 0 �→ 0, 1 �→ 1, 2 �→ 2, 3 �→ 3, 4 �→ 7, 7 �→ 4, 5 �→ 6, 6 �→ 5. 
More generally, π(Vm+n) is the permutation that leaves the first half of the elements 
unchanged, and that reverts the second half.

The mapping π : GLm+n(F2) → S2m+n is a group-homomorphism, and its range 
is called the group of linear permutations [11,12]. This group contains many of the 
permutations used in signal processing and communication algorithms, including stride 
permutations, bit-reversal, Hadamard reordering, and the Grey code reordering.

2.2. Streamed linear permutations (SLP)

We want to implement a circuit that performs a linear permutation on 2m+n points. If 
we assume that this circuit has 2n input (and output) ports, this means that the dataset 
has to be split into 2m parts that are fed (streamed) as input over 2m cycles. Similarly, 
the permuted output will be produced streamed over 2m cycles. As an example consider 
Fig. 3 in which 2n = 2 and 2m = 4.
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Fig. 3. Sketch of an implementation of the bit reversal permutation on 23 elements streamed on two ports. 
The dataset enters within 4 cycles (right), and is retrieved within 4 cycles (left).

With this convention, the element with the index i = c · 2m + p arrives as input in the 
cth cycle at the pth port. Particularly, the upper m bits of ib are the bit representation 
cb of the input cycle c, while the lower n bits are pb. For example, if m = 3 and n = 2, 
then the element indexed with

14b =

⎛
⎜⎜⎜⎝

0
1
1
1
0

⎞
⎟⎟⎟⎠ =

(
3b
2b

)

will arrive during the third cycle on the second port.
Thus, it is natural to block the desired linear permutation

P =
(
P1 P2
P3 P4

)

such that P1 is m ×m. This implies that the element that arrives on port p during the 
cth cycle has to be routed to the output port P3cb + P4pb at output cycle P1cb + P2pb.

P3 has a particular role here, as it represents “how the routing between the different 
ports must vary during time,” and directly influences the complexity of the implemen-
tation. For example, if P3 = 0, then the output is always P4pb without variation during 
time.

In fact, a theorem in [10] formalizes this intuition:

Theorem 4. A full-throughput implementation of an SLP for P with 2n ports that only 
uses 2 ×2-switches for routing requires at least p3 · 2n−1 many switches.

2.3. Implementing SLPs on hardware

Two special cases of SLPs can be directly translated to a hardware implementation. 
The first kind are the permutations that only permute across time, i.e., that do not 
change the port number of the elements. Thus, they satisfy P3cb + P4pb = pb for all c
and p, and therefore have the form

P =
(
P1 P2

I

)
.

n
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Fig. 4. Two hardware blocks to implement particular types of SLPs. On the left, an array of 4 RAM banks. 
Write and read addresses are used to delay differently elements. This block can be used to implement 
SLPs that do not permute across ports. On the right is an example of a switching network consisting of 4
2 ×2-switches. Switching networks can be used to implement SLPs that do not permute across time.

These SLPs can be implemented using an array of 2n blocks of RAMs as shown in 
Fig. 4(a).

Conversely, SLPs that only permute across the ports within each cycle have the form

P =
(
Im
P3 P4

)
.

They do not require memory and can be implemented using a network of p3 · 2n−1

2 ×2-switches as was shown in [10,7]. This result, combined with decomposition (9) and 
Theorem 2 yields an immediate corollary:

Theorem 5. For a given P , the associated SLP can be implemented using a RAM bank 
array (Fig. 4(a)) framed by two switching networks (Fig. 4(b)) with a total of max(p3, n +
m − p4 − p1) · 2n−1 2 ×2-switches.

Our Algorithms 3 and 4, introduced later, provide an efficient method to compute 
this architecture.

The total number of 2 ×2-switches, max(p3, n +m −p4−p1) ·2n−1, matches the bound 
of Theorem 4 in the case where n + m ≤ p4 + p3 + p1.

In the other case, this decomposition doesn’t provide an optimal solution with respect 
to Theorem 4. However, a “transposed” version of decomposition (9) (obtained by trans-
posing back (3) on PT , and then using the same method as the one we used to get (9)) 
provides an implementation consisting of a central switching network, and two extremal 
memory blocks:

P =
(
L1 L2

In

)(
Im
C3 C4

)(
R1 R2

In

)
,

where rkC3 = p3.
This implementation uses the minimal number of 2 ×2-switches, but uses the double 

amount of RAM banks compared to the previous structure.
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3. Preliminaries

In this section, we will prove some basic lemmas that we will use throughout this 
article.

3.1. Properties of the blocks of an invertible matrix

In this subsection, we derive some direct consequences of the invertibility of P on the 
range and the nullspace of its submatrices.

Lemma 2. The following properties are immediate from the structure of P :

kerP4 ∩ kerP2 = {0} (11)

kerP3 ∩ kerP1 = {0} (12)

imP4 + imP3 = K
n (13)

imP2 + imP1 = K
m (14)

P3(kerP1) ∩ P4(kerP2) = {0} (15)

P1(kerP3) ∩ P2(kerP4) = {0} (16)

Proof. We prove here equation (15). If x ∈ kerP1 and y ∈ kerP2 satisfy P3x = P4y, we 
have (

P1 P2
P3 P4

)
·
(

x
−y

)
=

(
P1x− P2y
P3x− P4y

)
=

(
0
0

)
.

Since P is non-singular, x = y = 0, as desired. �
These equalities yield the dimensions of the following subspaces:

Corollary 1.

dimP2(kerP4) = dim kerP4 = n− p4 (17)

dimP1(kerP3) = dim kerP3 = m− p3 (18)

dimP4(kerP2) = dim kerP2 = n− p2 (19)

dimP3(kerP1) = dim kerP1 = m− p1 (20)

dim imP4 ∩ imP3 = p4 + p3 − n (21)

dim imP2 ∩ imP1 = p2 + p1 −m (22)

Proof. We prove equation (17). Since, by (11), kerP4 ∩ kerP2 = {0}, the dimension of 
the image of kerP4 under P2 has the same dimension as kerP4, which is n − p4.

Equation (21) is a consequence of equation (13) and of the rank-nullity theorem. �
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Table 1
We summarize matrix operators to perform basic operations on subspaces. M is a general matrix, while 
A and B are matrices with m rows that represent the subspaces A and B; i.e. A = 〈A〉 and B = 〈B〉. 
Inspection of these routines shows that they all can be implemented with O(m3) runtime.

Operation related to subspaces Associated matrix operation Correspondence
Kernel of a matrix M kerM 〈kerM〉 = kerM
Direct sum of subspaces A,B (A B ) (A B ) = A ⊕ B
Intersection of subspaces A,B A∩B 〈A∩B〉 = A ∩ B
Complement of a subspace B in A A�B 〈A�B〉 ⊕ B = A

3.2. Algorithms on linear subspaces in matrix form

The algorithms we present in this article heavily rely on operations on subspaces of 
K

m. To make the representation of these algorithms more practical for implementation, 
we introduce a matrix representation for subspaces and formulate the subspace opera-
tions needed in this paper on this representation.

We represent a linear subspace as an associated matrix1 whose columns form a basis 
of this subspace. In other words, if A is a subspace of Km of dimension n, then we 
represent it using a m × n matrix A such that imA = A. In this case, and only in this 
case, we will use the notation 〈A〉 = imA to emphasize that the columns of A form a 
linear independent set.

With this notation we can formulate subspace computations as computations on their 
associated matrices as explained in the following. To formally emphasize this corre-
spondence, these operations on matrices will carry the same symbol as the subspace 
computation (e.g., ∩) they represent augmented with an overline (e.g., ∩). The opera-
tions are collected in Table 1. All algorithms in this paper are written as sequences of 
these matrix operations. Because of this, we implemented the algorithms by first de-
signing an object oriented infrastructure that provides these operations. Then we could 
directly map the algorithms, as they are formulated, to code.

Direct sum of two subspaces. If 〈A〉, 〈B〉 ≤ K
m are two subspaces, then the direct 

sum can be computed by concatenating the two matrices: 〈A〉 ⊕ 〈B〉 = 〈(A B )〉.
Null space of a matrix. Gaussian elimination can be used to compute the null space 

of a given m × n matrix M . Indeed, if the reduced column echelon form of the matrix (
M
In

)
is blocked into the form 

(
M1
M3 M4

)
, where M1 has m rows and no zero column, 

then kerM = 〈M4〉. We denote this computation with kerM = M4.
Intersection of two subspaces. For two subspaces imA, imB ≤ K

m, the intersection 
can be computed using the Zassenhaus algorithm. Namely, if the reduced column echelon 

form of 
(
A B
A

)
is blocked into the form 

(
C1
C3 C4

)
, where C1 and C4 have m

rows and no zero column, then imA ∩ imB = 〈C4〉. We denote this computation with 
A∩B = C4.

1 We allow the existence of matrices with 0 column to represent the trivial subspace of Km.
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Complement of a subspace within another one. Let imA ≤ imB ≤ K
m. Then, a 

complement 〈C〉 of imA in imB, i.e., a space that satisfies 〈C〉 ⊕ imA = imB, can be 
obtained as described in Algorithm 1.2 We denote this operation with C = B�A.

Algorithm 1 Complement of a subspace within another.
Input: Two matrices A and B with m rows
Output: A matrix A�B such that 〈A�B〉 ⊕ imB = imA

C ← A m × 0 matrix
for each column vector b of B do

if rk (A C b ) > rk (A C ) then
C ← (C b )

end if
end for
return C

3.3. Double complement

Lemma 3. Let C be a finite-dimensional vector space and let A, B ≤ C with dimA ≥
dimB. Then, there exists a space S ≤ C such that

{
S ⊕A = C,
S ∩ B = {0}.

Proof. We first consider the case where C = A + B. We denote with P (resp. Q) a 
complement of A ∩ B in A (resp. in B).

C = A + B

A

B

A ∩ B

A

P
Q

We show first that P ∩ Q = {0}. Let v ∈ P ∩ Q. As P ≤ A and Q ≤ B, we have 
v ∈ A ∩ B. Therefore, v ∈ P ∩ A ∩ B = {0}, as desired.

We now denote with b = {b1, . . . , bp} (resp. b′ = {b′1, . . . , b′q}) a basis of P (resp. Q), 
implying q ≤ p. Considering w = {b1 + b′1, . . . , bq + b′q}, the following holds:

i) w is linear independent: if {α1, . . . , αq} ∈ K
q is such that 

∑
αiwi = 0, then 

∑
αibi =

− 
∑

αib
′
i. As 

∑
αibi ∈ P and 

∑
αib

′
i ∈ Q, it comes that 

∑
αib

′
i =

∑
αibi = 0. It 

follows that for all i, αi = 0, yielding the result.

2 This algorithm can be implemented to run in a cubic arithmetical time by keeping a reduced column 
echelon form of (A C ), which makes it possible to check the condition within the loop in quadratic time.



126 F. Serre, M. Püschel / Linear Algebra and its Applications 509 (2016) 114–142
ii) 〈w〉 ∩ A = {0}: If v ∈ 〈w〉 ∩ A, then there exists {α1, . . . , αq} ∈ K
q such that 

v =
∑

αi(bi + b′i) ∈ A. It implies 
∑

αib
′
i ∈ A. As the left hand side is in Q, it comes 

that 
∑

αib
′
i = 0. It follows that for all i, αi = 0, yielding the result.

iii) 〈w〉 ∩ B = {0}: Same proof as above.

Then, since (A ∩B) ⊕Q = B, we have dim C = dimA +dimB−dim(A ∩B) = dimA +q. 
Therefore, dim〈w〉 = q = dim C − dimA, and S = 〈w〉 satisfies the desired conditions.

In the general case, where C > A + B, we use the same method and simply add a 
complement S ′ of A + B in C to the solution. �

Algorithm 2 uses the method in this proof to compute a basis of S, given A, B and C. 
Note that if dimA = dimB, then S is a complement of both A and B in C.

Algorithm 2 “Double complement” algorithm (Lemma 3).
Input: A, B and C, such that imA, imB ≤ imC and rkA ≥ rkB
Output: A matrix S such that 〈S〉 ⊕ imA = imC and 〈S〉 ∩ imB = {0}.

P ← A�(A∩B)
Q ← B�(A∩B)
P ′ ← P truncated such that P ′ and Q have the same size
S′ ← C� (A B )
return (S′ P ′ + Q )

4. Proof of Theorem 1

We start with an auxiliary result that asserts that a decomposition of the form (3) is 
characterized by L.

Lemma 4. Decomposition (3) exists if and only if L is chosen such that P4 − LP2 is 
non-singular. In this case,

rkR = rk(P3 − LP1). (23)

Proof. We have

(
Im
L In

)−1

P =
(

P1 P2
P3 − LP1 P4 − LP2

)
. (24)

This matrix can be uniquely decomposed as in (2) if and only if P4−LP2 is non-singular, 
and we have the desired value for rkR. �

Now we start the actual proof of Theorem 1. If we assume that decomposition (3)
exists for P , then Lemma 4 yields
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P =
(
Im
L In

)
·
(
P1 − P2(P4 − LP2)−1(P3 − LP1) P2

P4 − LP2

)
·

(
Im

(P4 − LP2)−1(P3 − LP1) In

)
. (25)

It follows:

• (4) is obvious from (25).
• K

n = im(P4 − LP2) ≤ imP4 + imL. Thus, n ≤ p4 + rkL, which yields (5).
• im(P3 −LP1) = (P3 −LP1)(Kn) ≥ (P3 −LP1)(kerP1) = P3(kerP1). (6) now follows 

from (20) and (23).
• (7) is a direct computation:

p3 = rk(P3 − LP1 + LP1)

≤ rk(P3 − LP1) + rk(LP1)

≤ rkR + rkL.

5. Proof of Theorem 2, case p3 ≤ m + n − p4 − p1

In this section, we provide an algorithm to construct an appropriate decomposition, 
in the case where p3 ≤ m + n − p4 − p1 (Fig. 1 left). This means that, using Lemma 4, 
we have to build a matrix L that satisfies⎧⎪⎪⎨

⎪⎪⎩
P4 − LP2 is non-singular,
rkL = n− p4,

rk(P3 − LP1) = m− p1.

5.1. Sufficient conditions

We first derive a set of sufficient conditions that ensure that L satisfies the two fol-
lowing properties: P4 − LP2 is non-singular (Lemma 5) and rk(P3 − LP1) = m − p1
(Lemma 6).

Lemma 5. If rkL = n −p4 and imP4⊕LP2(kerP4) = K
n, then P4−LP2 is non-singular.

Proof. We denote with U a complement of kerP4 in Kn, i.e., Kn = kerP4 ⊕ U . 
This implies imP4 = P4(Kn) = P4(U). Now, let imP4 ⊕ LP2(kerP4) = K

n. Hence, 
dimLP2(kerP4) = n − p4 = rkL from which we get imL = LP2(kerP4). In particular, 
LP2(U) ≤ imL = LP2(kerP4). Further,

im(P4 − LP2) = (P4 − LP2)(U ⊕ kerP4)

= (P4 − LP2)(U) + LP2(kerP4).
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As LP2(U) ≤ LP2(kerP4) and imP4 ∩ LP2(kerP4) = {0}, we have

im(P4 − LP2) = P4(U) + LP2(kerP4)

= imP4 + LP2(kerP4)

= K
n,

as desired. �
Lemma 6. If, for every vector v of imP1, L satisfies Lv ∈ P3P

−1
1 ({v}), then rk(P3 −

LP1) = m − p1.

Proof. In the proof of Theorem 1 (Section 4) we already showed that im(P3 − LP1) ≥
P3(kerP1).

Let now Lv ∈ P3P
−1
1 ({v}) for all v ∈ imP1. If u ∈ K

m, we have

(P3 − LP1)u = P3u− LP1u

∈ P3u− P3P
−1
1 ({P1u})

≤ P3u− P3(u + kerP1)

≤ P3(kerP1).

Therefore, im(P3 − LP1) = P3(kerP1). Thus, rkP3 − LP1 = m − p1. �
The following lemma summarizes the two previous results:

Lemma 7. Let Y be a complement of imP4 and T a complement of P1(kerP3) in imP1. 
If

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

imL = Y,

L · P2(kerP4) = Y,

L · v ∈ P3P
−1
1 ({v}), ∀v ∈ T ,

L · P1(kerP3) = {0},

then L is an optimal solution.3

5.2. Building L

We now build a matrix L that satisfies the previous set of sufficient conditions. For 
all v in a complement T of P1(kerP3), L has to satisfy Lv ∈ P3P

−1
1 ({v}). We first show 

3 The proposed set of sufficient conditions is stronger than necessary; if we replace the last condition with 
L · P1(kerP3) ≤ P3(kerP1), if and only if holds.
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that, given a suitable domain and image, it is possible to build a bijective linear mapping 
that satisfies this property.

Lemma 8. Let P1(kerP3) ⊕ T = imP1 and P3(kerP1) ⊕ V = imP3. If we define the 
subspace

F = P−1
1 (T ) ∩ P−1

3 (V),

then the mapping f : T → V, such that for all v ∈ F , f(P1v) = P3v, is well defined and 
is an isomorphism.

Proof. We prove the lemma by first considering two functions f1 and f2 that are P1 and 
P3 restricted to F as shown in the diagram. We show that both are isomorphisms. Then 
f = f2 ◦ f−1

1 is the desired function.

T V

F

f

f1 : x �→ P1x f2 : x �→ P3x

We begin with the surjectivity of f1. Let x ∈ T . As T ≤ imP1, there exists a vector 
v such that P1v = x. The coset v+kerP1 is obviously a subset of P−1

1 (T ). Additionally, 
its image under P3, the coset P3(v + kerP1) = P3v + P3 kerP1 contains a unique rep-
resentative P3vf in V, since imP3 = P3(kerP1) ⊕ V. Therefore, vf ∈ P−1

3 (V), and thus 
vf ∈ F and f1(vf ) = x, as desired.

We now prove that f1 is injective. Let v ∈ ker f1 ≤ F . We have P3v ∈ V. Since 
v ∈ kerP1, P3v ∈ P3 kerP1. Since P3(kerP1) ∩ V = {0}, P3v = 0 and thus v ∈ kerP3. 
Equation (12) shows that v = 0, as desired. Thus, f1 is bijective.

The proof that f2 : F → V, v �→ P3v is bijective is analogous. It follows that 
f = f2 ◦ f−1

1 is the desired isomorphism. �
As explained below, we now build a matrix L that matches the conditions listed in 

Lemma 7. As they involve two spaces that may not be in a direct sum, P2(kerP4) and 
a complement of P1(kerP3) in imP1, some precautions must be taken.

We first construct the image Y of L. It must be a complement of imP4 and must 
contain a complement Y1 of P3(kerP1) in imP3. From p3 ≤ m + n − p4 − p1 we get 
m − p1 ≥ p4 + p3 − n and thus dim(P3(kerP1)) ≥ dim(imP4 ∩ imP3) using (20) and 
(21). Therefore, we can use the Lemma 3 to build a space Y1 such that

{
Y1 ⊕ P3(kerP1) = imP3,

Y1 ∩ imP4 ∩ imP3 = {0}.

We then complete Y1 to form a complement Y of imP4.
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We now decompose Km the following way:

X1 ⊕ X2 ⊕ X3 ⊕ P1(kerP3) ⊕ X4 = K
m.

P2(kerP4)

imP1

We define X2 = P2(kerP4) ∩ imP1. X2 ∩P1(kerP3) = {0} according to equation (16). 
Then, we define X3 as a complement of P1(kerP3) ⊕X2 in imP1 and X1 as a complement 
of X2 in P2(kerP4). X4 is defined as a complement of X1 ⊕X2 ⊕X3 ⊕ P1(kerP3).

Finally, we build L through the associated mapping, itself defined using a direct sum 
of linear mappings defined on the following subspaces of Km:

• We use Lemma 8 to construct a bijective linear mapping f from T = X2 ⊕ X3 onto 
V = Y1. By definition, for all v ∈ T , f verifies f(v) ∈ P3P

−1
1 ({v}). Furthermore, as 

f is bijective, its restriction on X2 is itself bijective onto f(X2).
• We complete this bijective linear mapping with g, a bijective linear mapping between 

X1 and a complement Y2 of f(X2) in Y. Such a mapping exists as we have dimX1 −
dimY2 = dimX1 + dimX2 − dimY = dim(P2(kerP4)) − (n − p4) = 0. This way, the 
restriction of f ⊕ g on X1 ⊕X2 = P2(kerP4) is bijective onto Y.

• We consider the mapping h that maps P1(kerP3) ⊕X4 to {0}.

X1 X2 ⊕X3 P1(kerP3) ⊕X4

Y2 Y1 {0}

g f h

The matrix associated with the linear mapping f ⊕ g ⊕ h satisfies all the conditions 
of Lemma 7, and is therefore an optimal solution.

This method is summarized in Algorithm 3, which allows us to construct a solution 
for Theorem 2. Its key part is the construction of a basis of F , which uses a generalized 
pseudo-inverse P †

1 (resp. P †
3 ) of P1 (resp. P3), i.e., a matrix verifying P1P

†
1P1 = P1 (resp. 

P3P
†
3P3 = P3). This algorithm is a main contribution of this article.

Inspection of this algorithm shows that its arithmetic cost is O((m + n)3).

5.3. Example

We illustrate our algorithm with a concrete example. Motivated by our main applica-
tion (Section 2) we choose as base field K = F2. For m = 4 and n = 3, we consider the 
matrix
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Algorithm 3 Constructing L (Theorem 2), case p3 ≤ m + n − p4 − p1.
Input: m,n and P ∈ GLm+n(K) such that p3 ≤ m + n − p4 − p1
Output: L

Y1 ← Algorithm 2 with A = P3 · kerP1, B = P4∩P3, C = P3
Y ← (Y1 Im� (Y1 P4 ) )
X2 ← (P2 · kerP4)∩P1
X3 ← P1� ( (P1 · kerP3) X2 ))
X1 ← (P2 · kerP4)�X2
X4 ← Im�

(
P1 P2 · kerP4

)
F ←

(
kerP1 P †

1 · (X2 X3 )
)
∩
(
kerP3 P †

3 · Y1
)

Y2 ← Y�(P3 · (
(
kerP1 P †

1 · X2
)
∩F ))

LR ←
(
P1 · F X1 P1 · kerP3 X4

)
LL ← (P3 · F Y2 Z ), where Z is a zero filled matrix such that LL has the same number of columns 
as LR

return LL · L−1
R

P =
(
P1 P2
P3 P4

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1

1 1 1 1 1 1
1 1

1 1 1
1 1 1 1 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We observe p3 = 3 ≤ m +n −p4−p1 = 4 +3 −1 −3. Therefore, we can use Algorithm 3
to compute a suitable L.

The first step is to compute Y1. We have

P3 · kerP1 =
(1

0
1

)
and P4∩P3 =

(0
1
0

)
.

Using Algorithm 2, we get

Y1 =
(1 1

1 0
1 0

)
.

Then, we complete it to form a complement of imP4:

Y =
(1 0

0 1
0 1

)
.

The next step computes the different domains:

X2 =

⎛
⎜⎝

1
1
0

⎞
⎟⎠ , X3 =

⎛
⎜⎝

1
0
0

⎞
⎟⎠ , X1 =

⎛
⎜⎝

0
0
0

⎞
⎟⎠ and X4 = ().
0 0 1
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To compute F , we need pseudo-inverses of P1 and P3:

P †
1 =

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
1 0 1 0

⎞
⎟⎠ and P †

3 =

⎛
⎜⎝

0 1 1
0 0 1
0 0 0
1 1 1

⎞
⎟⎠ .

We then obtain

F =

⎛
⎜⎝

0 0
1 0
0 1
1 0

⎞
⎟⎠ .

Then, we compute Y2:

Y2 =
(1

0
0

)
.

Now we can compute L. With

LR =

⎛
⎜⎝

1 0 0 0
0 1 0 1
0 0 0 1
0 0 1 0

⎞
⎟⎠ , LL =

(1 1 1 0
1 0 0 0
1 0 0 0

)
,

we get

L = LL · L−1
R =

(1 1 1 1
1 0 0 0
1 0 0 0

)
.

The final decomposition is now obtained using (25):

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1 1 1 1 1
1 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1

1 1 1 1 1
1 1 1

1 1
1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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This decomposition satisfies rkL = 2 and rkR = 1, thus matching the bounds of 
Theorem 1.

If we consider the application presented in Section 2, this decomposition provides 
a way to implement in hardware the permutation associated with P on 128 elements, 
arriving in chunks of 8 during 16 cycles. This yields an implementation consisting of a 
permutation network of 4 2 ×2-switches, followed by a block of 8 RAM banks, followed 
by another permutation network with 8 2 ×2-switches.

6. Proof of Theorem 2, case p3 ≥ m + n − p4 − p1

In this case, the third inequality in Theorem 1 is restrictive (Fig. 1 right). Using again 
Lemma 4, we have to build a matrix L satisfying

⎧⎪⎪⎨
⎪⎪⎩
P4 − LP2 is non-singular,
rkL = n− p4,

rk(P3 − LP1) = p4 + p3 − n.

As in the previous section, we will first provide a set of sufficient conditions for L and 
then build it.

6.1. Sufficient conditions

The set of conditions that we will derive in this subsection will be slightly more 
complex than in the previous section, as we cannot reach the intrinsic bound of rk(P3 −
LP1). Particularly, we cannot use Lemma 6 directly.

Lemma 9. If W is such that W ⊕ imP4 = K
n and T is such that

⎧⎪⎨
⎪⎩

T ∩ P1(kerP3) = {0},
T ≤ imP1,

dim T = n− p4,

then if L satisfies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

imL = W,

L · P2(kerP4) = W,

L · v ∈ P3P
−1
1 ({v}), ∀v ∈ T ,

L · P1(kerP3) = {0},

then L is a solution4 that verifies rkL = n − p4 and rk(P3 − LP1) = p4 + p3 − n.

4 If we replace the last condition with L · P1(kerP3) ≤ P3(kerP1), this set of conditions is actually 
equivalent to having an optimal solution L that satisfies rkL = n − p4.
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Proof. Let L be a matrix that satisfies the conditions above. Using Lemma 5 as before, 
we get that rkL = n − p4 and P4 − LP2 invertible.

Now, with the definition of T , we can define a dimension p4 + p3 + p1 −m − n space 
T ′ such that imP1 = P1(kerP3) ⊕ T ⊕ T ′. Then, we define a matrix L′ such that

⎧⎪⎨
⎪⎩

L′ · v ∈ Lv − P3P
−1
1 ({v}), for all v ∈ T ′,

L′ · v = 0, for all v in P1(kerP3) ⊕ T ,

L′ · v = 0, for all v in a complement of imP1,

L′ is therefore a rank p4 +p3 +p1−m −n matrix such that for all v ∈ imP1, (L −L′)v ∈
P3P

−1
1 ({v}). We apply Lemma 6 on L − L′ and get

rk(P3 − LP1) = rk(P3 − (L− L′)P1 − L′P1)

≤ rk(P3 − (L− L′)P1) + rk(L′P1)

≤ dimP3(kerP1) + rkL′

≤ p4 + p3 − n,

as desired. �
6.2. Building L

We will build a matrix L that matches the conditions listed in Lemma 9. As before, we 
consider the image Y of L first. We will design it such that it is a complement of imP4, 
and that is contained in a complement Y ′ of P3(kerP1) in imP3. Using p3 ≥ m +n −p4−p1
with (20) and (21) we get dim(P3 kerP1) ≤ dim(imP4 ∩ imP3). With Lemma 3, we can 
construct a space Y that satisfies

{
Y ⊕ (imP4 ∩ imP3) = imP3,

Y ∩ P3(kerP1) = {0}.

This space satisfies Y ⊕ imP4 = imP3 + imP4 = K
n according to (13), and can be 

completed to a complement Y ′ of P3(kerP1) in imP3. Note that we will use Y ′ only to 
define f ; the image of L will be Y.

Now, as before, we build L through the associated mapping, itself defined using a 
direct sum of linear mappings defined on the same subspaces of Km as in Section 5.2.

• We use Lemma 8 to construct a first bijective linear mapping f ′ between T ′ = X2⊕X3
and Y ′. As f ′ is bijective, we can define T = f ′ −1(Y) and f = f ′|T . Thus, T satisfies 
the properties in Lemma 9 and L the condition for all v ∈ T , Lv ∈ P3P

−1
1 ({v}).

• Then, we consider a complement X ′
1 of T ∩ X2 in P2(kerP4), a complement Y ′

2 of 
f(T ∩ X2) in Y and a bijective linear mapping g between X ′

1 and Y ′
2. This way, the 

restriction of f ⊕ g on P2(kerP4) is bijective onto Y.
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The rest of the algorithm in similar to the previous case:

• We consider the mapping h that maps P1(kerP3) to {0}.
• To complete the definition of L, we take a mapping h′ between a complement X ′

4 of 
X ′

1 ⊕ T ⊕ P1(kerP3) and {0}.

X ′
1 T = f ′ −1(Y) P1(kerP3) X ′

4

Y ′
2 Y {0}

g f h h′

The matrix associated with the mapping f ⊕ g ⊕ h ⊕ h′ satisfies all the conditions of 
Lemma 9, and is therefore an optimal solution.

Algorithm 4 summarizes this method, and allows to construct a solution for Theo-
rem 2, in the case where p3 > m + n − p4 − p1. This algorithm is a main contribution of 
this article.

Algorithm 4 Constructing L (Theorem 2), case p3 > m + n − p4 − p1.
Input: m,n, P ∈ GLm+n(K) such that p3 > m + n − p4 − p1
Output: L

Y ← Algorithm 2 with A = P4∩P3, B = P3 · kerP1 and C = P3
X2 ← (P2 · kerP4)∩P1
X3 ← P1�

(
P1 · kerP3 X2

)
F ←

(
kerP1 P †

1 · (X2 X3 )
)
∩
(
kerP3 P †

3 · Y
)

X′
1 ← (P2 · kerP4)�((P1 · F )∩X2)

X4 ← Im�
(
X′

1 P1 · F P1 · kerP3
)

Y ′
2 ← Y�(P3 · (F∩

(
P †

1 · X2 kerP1
)
))

LR ←
(
P1 · F X′

1 P1 · kerP3 X4
)

LL ← (P3 · F Y ′
2 Z ), where Z is a zero filled matrix such that LL has the same number of columns 

as LR

return LL · L−1
R

As in the previous case, this algorithm has an arithmetic cost cubic in m + n.

6.3. Example

We now consider, for K = F2, m = 4 and n = 3, the matrix

P =
(
P1 P2
P3 P4

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1

1 1
1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We observe p3 = 3 > m + n − p4 − p1 = 4 + 3 − 2 − 3. Therefore, we use Algorithm 4
to compute a suitable L.

The first step is to compute Y . We have

P3 · kerP1 =
(0

1
1

)
and P4∩P3 =

(0
1
0

)
.

Using Algorithm 2, we get

Y1 =
(1 1

1 0
1 0

)
.

Then, we complete it to form a complement of imP4:

Y =
(1 0

1 0
0 1

)
.

The next step computes the different domains:

X2 = () and X3 =

⎛
⎜⎝

1 0
0 1
1 0
0 0

⎞
⎟⎠ .

To compute F , we need pseudo-inverses of P1 and P3:

P †
1 =

⎛
⎜⎝

0 0 0 0
0 1 0 1
0 0 1 1
0 1 0 0

⎞
⎟⎠ and P †

3 =

⎛
⎜⎝

1 1 0
0 0 0
1 0 1
0 1 0

⎞
⎟⎠

and get

F =

⎛
⎜⎝

1
1
0
0

⎞
⎟⎠ .

Next we compute the remaining subspaces that depend on F :

X ′
1 =

⎛
⎜⎝

0
1
1

⎞
⎟⎠ , X4 =

⎛
⎜⎝

1
0
0

⎞
⎟⎠ , and Y ′

2 =
(1

0
1

)
.

1 0
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Now we can compute L. With

LR =

⎛
⎜⎝

1 0 1 1
1 1 0 0
1 1 1 0
0 1 1 0

⎞
⎟⎠ , LL =

(1 1 0 0
0 0 0 0
1 1 0 0

)
,

we get

L = LL · L−1
R =

(0 1 0 0
0 0 0 0
0 1 0 0

)
.

The final decomposition is obtained using (25):

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1

1 1 1 1
1 1 1 1

1
1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1 1
1 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This decomposition satisfies rkL = 1 and rkR = 2, thus matching the bounds of 
Theorem 1.

As before, if we consider the application of Section 2. The decomposition shows that we 
can implement in hardware the permutation associated with P on 128 elements, arriving 
in chunks of 8 during 16 cycles through a permutation network of 8 2 × 2-switches, 
followed by a block of 8 RAM banks, followed by another permutation network with 4
2 ×2-switches.

7. Rank exchange

The solution built in Section 6.2 satisfies rkL = n −p4 and rk(P3−LP1) = p4+p3−n. 
In this section, we will show that it is possible to construct a solution for all possible pairs 
(rkL, rk(P3 −LP1)) matching the bounds in Theorem 1. First, we will construct a rank 
1 matrix L′ that will trade a rank of L for a rank of P3−LP1 (i.e., rk(L +L′) = 1 +rkL, 
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Fig. 5. L′ trades a rank of L for a rank of R on the associated decomposition.

rk(P3− (L +L′)P1) = rk(P3−LP1) −1 and P4− (L +L′)P2 is non-singular) (see Fig. 5). 
This method can then be applied several times, until rk(P3−LP1) reaches its own bound, 
m − p1.

We assume that L satisfies the following conditions:
⎧⎪⎨
⎪⎩

P4 − LP2 is non-singular,
rkL + rk(P3 − LP1) = p3,

rk(P3 − LP1) > m− p1.

As in the previous sections, we first formulate sufficient conditions on L′, before build-
ing it.

7.1. Sufficient conditions

We now define C = P1 − P2(P4 − LP2)−1(P3 − LP1).

Lemma 10. If z ∈ K
m satisfies z /∈ ker(P3 − LP1) + kerP1 and L′ satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rkL′ = 1,
L′P1 ker(P3 − LP1) = {0},
L′P1z = (P3 − LP1)z,
L′Cz �= 0.

Then L + L′ is an optimal solution to our problem that satisfies rk(P3 − (L + L′)P1) =
rk(P3 − LP1) − 1.

Proof. We first prove that P4 − (L + L′)P2 = (I − L′P2(P4 − LP2)−1)(P4 − LP2) is 
non-singular. Let x ∈ ker(I − L′P2(P4 − LP2)−1). x satisfies

x− L′P2(P4 − LP2)−1x = 0.
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Therefore, x ∈ imL′. As rkL′ = 1, ∃λ ∈ K, x = λ(P3 − LP1)z = λL′P1z. It comes that

λL′P1z − λL′P2(P4 − LP2)−1(P3 − LP1)z = 0.

Finally, λL′Cz = 0, which implies, as L′Cz �= 0, λ = 0, as desired.

We now prove that rk(P3−(L +L′)P1) = rk(P3−LP1) −1. We have already ker(P3−(L +
L′)P1) ≤ ker(P3−LP1) as L′P1 ker(P3−LP1) = {0}. We also have (P3−(L′+L)P1)z = 0. 
As z /∈ ker(P3 − LP1) + kerP1, ker(P3 − (L + L′)P1) ≥ ker(P3 − LP1) ⊕ 〈z〉. Therefore,

dim ker(P3 − (L + L′)P1) ≥ 1 + dim ker(P3 − LP1),

as desired. �
7.2. Building L′

Lemma 11. ker(P3 − LP1) ∩ kerP1 = {0}.

Proof. This is a consequence of (24): the block column 
(

P1
P3 − LP1

)
has full rank. �

Thus, we have dim(ker(P3−LP1) ⊕kerP1) = 2m −p1−rk(P3−LP1) < m. Decomposi-
tion (25) shows that C is non-singular, and using Lemma 11, we have dimC−1P1 ker(P3−
LP1) = dimP1 ker(P3−LP1) = dim ker(P3−LP1) = m − rk(P3−LP1). Using Lemma 3, 
we can build a space Z such that

{
Z ⊕ ker(P3 − LP1) ⊕ kerP1 = K

m,

Z ∩ C−1P1 ker(P3 − LP1) = {0}.

We can now pick a nonzero element z ∈ Z and build a corresponding L′:

• If Cz ∈ P1 ker(P3−LP1) ⊕〈P1z〉: We take a complement A of P1 ker(P3−LP1) ⊕〈P1z〉
and build L′ such that

{
L′P1z = (P3 − LP1)z,
L′(P1 ker(P3 − LP1) ⊕A) = {0}.

We have L′Cz �= 0. In fact, Cz can be uniquely decomposed in the form k + λP1z, 
where k ∈ P1 ker(P3 − LP1) and λ ∈ K. As z /∈ C−1P1 ker(P3 − LP1), λ �= 0. Then, 
L′Cz = L′k + L′λP1z = 0 + λ(P3 − LP1)z �= 0.
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• If Cz /∈ P1 ker(P3 −LP1) ⊕〈P1z〉: The vector a = Cz−P1z is outside of P1 ker(P3 −
LP1) ⊕〈P1z〉. Therefore, it is possible to build a complement A of P1 ker(P3−LP1) ⊕
〈P1z〉 that contains a. Then, we build L′ as before:

{
L′P1z = (P3 − LP1)z,
L′(P1 ker(P3 − LP1) ⊕A) = {0}.

As in the previous case, we have L′Cz = L′a + L′P1z = 0 + (P3 − LP1)z �= 0.

In both cases, the matrix L′ we built satisfies the conditions of Lemma 10. Therefore, 
L + L′ is the desired solution.

Algorithm 5 summarizes this method, and allows to build a new optimal solution from 
a pre-existing one, with a different trade-off. This algorithm is a main contribution of 
this article.

Algorithm 5 Exchanging ranks between L and R (Theorem 3).
Input: P and a solution L such that rk(P3 − LP1) > m − p1
Output: A new optimal solution L with a rank incremented by 1

K ← ker(P3 − LP1)
C ← P1 − P2(P4 − LP2)−1(P3 − LP1)
Z ← Algorithm 2 with A =

(
K kerP1

)
, B = C−1P1K and C = Im

z ← first column of Z
if Cz ∈ (P1 · K P1z ) then

A ← Im�P1 · (K z )
else

a ← (C − P1)z
A ← (Im� (P1K P1z a ) a )

end if
L′

R ← (P1z P1K A )
L′

L ← ( (P3 − LP1)z F ), where F is a zero filled matrix such that L′
L has the same number of columns 

as L′
R

return L + L′
L · L′ −1

R

7.3. Example

To illustrate Algorithm 5, we continue the example of Section 6.3, and the matrix L
that we found. We have

K =

⎛
⎜⎝

1 0
0 1
0 0
0 0

⎞
⎟⎠ and C =

⎛
⎜⎝

1 1
1

1 1
1 1

⎞
⎟⎠ .

Using Algorithm 2, we get

Z = z =

⎛
⎜⎝

0
0
1

⎞
⎟⎠ .
0
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As Cz =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ is not included in (P1K P1z ) =

⎛
⎜⎝

1 0 0
0 1 0
1 0 0
0 0 1

⎞
⎟⎠, we compute A as a 

complement of (P1K P1z ) that contains a =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠:

A =
〈⎛
⎜⎝

1
0
0
0

⎞
⎟⎠
〉
.

Now, we compute L′, using

L′
R =

⎛
⎜⎝

1 0 1 1
0 1 0 0
1 0 1 0
0 1 1 0

⎞
⎟⎠ , L′

L =
(0 0 0 0

0 0 0 0
1 0 0 0

)
, and L′ =

(0 0 0 0
0 0 0 0
0 1 1 1

)
.

Finally, we get the new decomposition, using, as usual, Equation (25):

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1 1
1

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1

1 1 1 1
1 1 1 1

1
1

1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As expected, the left off-diagonal rank has increased by one, while the right one has 
decreased by one. The two different decompositions that we now have for P cover all the 
possible tradeoffs that minimize the off-diagonal ranks.

8. Conclusion

In this paper, we introduced a novel block matrix decomposition that generalizes the 
classical block-LU factorization. A 2 ×2-blocked invertible matrix is decomposed into a 
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product of three matrices: lower block unitriangular, upper block triangular, and lower 
block unitriangular matrix, such that the sum of the off-diagonal ranks are minimal. We 
provided an algorithm that computes an optimal solution with an asymptotic number of 
operations cubic in the matrix size. We note that we implemented the algorithm for finite 
fields, for rational numbers, for Gaussian rational numbers and for exact real arithmetic 
for validation. For a floating point implementation, numerical issues may arise.

The origin of the considered decomposition, as we explained, is in the design of optimal 
circuits for a certain class of streaming permutations that are very relevant in practice. 
However, we believe that because of its simple and natural structure, the matrix de-
composition is also of pure mathematical interest. Specifically, it would be interesting 
to investigate if the proposed decomposition is a special case of a more general problem 
that involves, for example, finer block structures.
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