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ABSTRACT

The Walsh-Hadamard transform (WHT) is computed using a
network of butterflies, similar to the fast Fourier transform.
The network is not unique but can be modified in exponen-
tially many ways by properly changing the permutations be-
tween butterfly stages. Our first contribution is the exact char-
acterization of all possible WHT networks. Then we aim to
find the optimal networks for streaming implementations. In
such an implementation the input is fed in chunks over several
cycles and the hardware cost is thus reduced in proportion. To
find the optimal network we smartly search through all pos-
sibilities for small sizes and discover novel networks that are
thus proven optimal. The results can be used to extrapolate
the optimal hardware cost for all sizes but the associated al-
gorithms still remain elusive.

Index Terms— Hadamard matrix, linear permutation,
FPGA, streaming architecture, throughput

1. INTRODUCTION

The Walsh-Hadamard transform (WHT) is an important func-
tion in signal processing [1, 2] and coding theory [3, 4]. Sim-
ilar to the fast Fourier transform (FFT), it is computed using
a network of n2n−1 butterflies but without the twiddle fac-
tors in between (see Fig 1(a) for n = 4). The network can
be modified in exponentially many ways by properly chang-
ing the permutations between stages (e.g., [5]). For example,
Fig 1(b) shows a Pease-like WHT [6] that consists of equal
stages suitable for iterative implementation in hardware.

Knowing the exact space of valid WHT networks makes it
possible to search for the optimal one for a given implemen-
tation task. In this paper we consider streaming implementa-
tions of the WHT. In these the input of size 2n is fed in chunks
of size 2k over 2n−k cycles and the hardware cost is reduced
to O(n2k) [7, 8]. Fig. 2 shows an example for 2k = 4. Their
implementation requires streaming permutation for which op-
timal solutions using RAM banks and switches are known
[9, 10] under certain assumptions that hold here.

Contribution. In this paper we ask the following ques-
tion: For given n and k, which is the optimal WHT net-

work for a streaming implementation? Optimal means that
the needed streaming permutations between stages require the
minimal number of RAMs and switches. Towards answering
this question we offer the following contributions:

• We exactly characterize the (exponentially large) set of
all valid WHT networks such that the occurring per-
mutations are linear. Linearity makes the efficient in
implementation and is explained later.

• We present an algorithm to smartly search the large
space of WHT networks at least for small sizes n.

• Using the search we find, for given n and k, novel and
non-obvious WHT networks that have proven optimal
hardware cost. An example is shown in Fig. 1(c).

• Our results show the trend in hardware cost and give
evidence that there are for all sizes n yet undiscovered
WHT networks that are optimal for streaming.

Related work. We use prior work on optimal streaming
implementations with RAM banks of so-called linear permu-
tations [9, 10]. Other types of memory in their implementa-
tions were studied in [11, 12, 13] and could be combined with
our methods here. Streaming solutions for general permuta-
tions have been proposed in [14, 15].

Signal processing hardware with different resource size
trade-offs is a classical research topic [16, 17, 18, 19]. Most
closely related to our work are streaming implementations of
FFTs [7, 8] that allow the choice of a desired trade-off be-
tween high performance and low resource consumption.

Finally, [5, 20] is similar in concept for WHT software
implementations. It explores a large set of WHT algorithms
to obtain efficient software library implementations, or as a
test case for a model predicting the performances of libraries.
However, the goal is to find the recursion best matched to
the memory hierarchy; streaming in hardware poses a very
different structural requirement.

2. BACKGROUND AND NOTATIONS

We provide background on Walsh-Hadamard transform
(WHT) algorithms and their implementation in streaming
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(a) Radix-2r = 2 Iterative WHT (1)
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(b) Radix-2r = 2 Pease WHT (2)
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(c) Algorithm that, once streamed with 2k = 4,
yields an implementation that minimizes both the
number of RAM stages, and the number of switch
stages.

Fig. 1. Dataflows computing a WHT on 2n = 8 elements. The H2 blocks represent butterflies.
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Fig. 2. Algorithms from Fig. 1 folded with a streaming width
2k = 4. This architecture uses a fourth of the number of
butterflies, but processes the inputs over 2n−k = 4 cycles.

hardware. Particularly important are the permutations be-
tween butterfly stages for which there is a large degree of
freedom that we use as a search space to find the optimum.

(Bit-)linear and bit-permutations. For an integer 0 ≤
i < 2n, we denote its bit representation as ib, viewed as col-
umn vector. For example, for n = 3, 6b = (1 1 0)T . Formally,
ib ∈ Fn

2 , where F2 is the Galois field with two elements.
Every n × n invertible bit-matrix P (i.e, P ∈ GLn(F2))

induces a permutation π(P ) on {0, 1, . . . , 2n − 1}. Namely,
π(P )(i) = j if jb = P · ib. We call such permutation an LP
(linear permutation) [21]. Note that not all permutations on
2n points are linear: e.g., every π(P ) maps 0 to 0.

If P is even a permutation matrix, we call π(P ) a BP
(bit-permutation). A well-known example is the bit-reversal
permutation, where P has ones only on the diagonal from top-
right to bottom-left. Another BP is the perfect shuffle, which
on the bits is a cyclic right-shift C.

WHT algorithms. The WHT is a linear transform that
computes y = H2nx where x, y ∈ C2n . It is defined by the
Hadamard matrix:

H2 =
(
1 1
1 −1

)
, and H2n = H2 ⊗H2n−1 , for n > 1.

Here, ⊗ denotes the Kronecker product defined as A ⊗ B =
[aijB]i,j for A = [aij ]. H2 is called butterfly.

The definition, recursively applied, directly yields the al-
gorithm, i.e., butterfly network, shown in Fig. 1(a). It consists
of n stages of 2n−1 butterflies I2n−1 ⊗H2 , where I denotes

the identity matrix. It is, in essence, a Cooley-Tukey FFT [22]
without twiddle factors, requiring only n2n operations. As for
the FFT, the occuring permutations are all BPs; thus, the algo-
rithm can be formally written using the Kronecker formalism
[23, 24] as

H2n = π(P0) ·
n∏

`=1

((I2n−1 ⊗H2) · π(P`)) , (1)

where P0, . . . , Pn are n×n bit-permutation matrices. A given
butterfly network, i.e., algorithm, can be manipulated in a
myriad of ways to obtain variants, for example, by permut-
ing the butterflies within stages. A popular example is the
constant-geometry Pease-like [6] algorithm that has the same
perfect shuffle π(C) after every stage (see Fig. 1(b)). It is
formally written as

H2n = π(In) ·
n∏

`=1

((I2n−1 ⊗H2) · π(C)) . (2)

We will later determine the exact set of possible permutations
between stages to exhaustively search for the optimal WHT
algorithm when used for the streaming implementations ex-
plained next.

Streaming WHT. A given WHT algorithm can be di-
rectly mapped to hardware but incurs O(n2n) area cost. To
reduce this cost to O(n2k), while maintaining high through-
put, the network can be folded as shown in Fig. 2 [7]. To do
so, the input is split into chunks of 2k elements (the stream-
ing width) over 2n−k cycles. This way, each stage only
needs 2k−1 butterflies, which are reused 2n−k times for the
same dataset. The challenge is in implementing the needed
streaming permutations, which now permute in space and
time (across cycles).

Optimal solutions for BPs and LPs were developed in
[9] and [10], respectively, assuming RAM banks and 2×2-
switches as building blocks. The RAM optimality was shown
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Fig. 3. A streaming LP implemented using the method in
[10].

in [15]. An example for 2k = 4 is sketched in Fig. 3 with one
stage of RAM banks and two blocks of 2 stages of switches
each.

Important for this paper is only the minimal number of
RAM and switch stages needed for a given P and k. First, P
is blocked as

P =

(
Pa Pb

Pc Pd

)
, with Pd of size k × k.

If Pa = In−k and Pb = 0 no RAM stage is needed, other-
wise 1 stage (of 2k RAMs). Further, the optimal number of
switches needed in this case is

max(rankPc, n− rankPa − rankPd)

stages of 2k−1 2×2-switches each. Note that in some cases,
the number of switches can be reduced at the price of twice
the RAM [10]. We will not consider this option as we con-
sider RAMs more costly.

3. ENUMERATION OF WHT ALGORITHMS

Besides the iterative and Pease WHT, many other variants can
be derived, corresponding to different butterfly networks. For
example, the butterflies in one stage can be permuted with a
permutation σ. Formally, this means replacing

I2n−1 ⊗H2 = (σ ⊗ I2) · (I2n−1 ⊗H2) · (σ−1 ⊗ I2). (3)

We are only interested in the cases where σ ⊗ I2 is linear,
which is true if and only if σ is linear, i.e., σ = π(P ), P ∈
GLn−1(F2). Using π(P )⊗ I2 = π(P ⊕ I1) (⊕ is the block-
diagonal composition) [9], (3) becomes

I2n−1 ⊗H2 = π(P ⊕ I1) · (I2n−1 ⊗H2) ·π(P−1⊕ I1). (4)

Using these degrees of freedom, (2) was derived from (1) and
one could wonder whether there are more valid transforma-
tion of the WHT algorithms.

The following theorem is a main contribution of this paper
and precisely characterizes all permutations between stages
that produce a valid WHT:

Theorem 1. The Hadamard matrix Hn satisfies

H2n = π(P0) ·
n∏

`=1

((I2n−1 ⊗H2) · π(P`))

if and only if there exist B ∈ GLn(F2) and (Q1, · · · , Qn) ∈
(GLn−1(F2))

n such that

P0 = B ·
(
Q1

1

)
, Pn =

(
Q−1

n

1

)
·BT , and

P` =

(
Q−1

`

1

)
·
(
Q`+1

1

)
, for 0 < ` < n.

In particular, there are gnn−1gn possibilities, where gn =

|GLn(F2)| =
∏n−1

i=0 (2
n − 2i).

As an example, (2) corresponds to Qi = In−1 for 1 ≤
i ≤ n, and B = In.

Proof. We only provide a sketch of the proof due to space
limitations; a complete one is available in [25]. First, we de-
rive a necessary condition for the matrices P0, . . . , Pn such
that the matrix π(P0) ·

∏n
`=1 ((I2n−1 ⊗H2) · π(P`)) has no

zero elements. Then, assuming that this condition holds, we
derive a general expression of this matrix, and match it with
H2n . This yields the shown set of necessary conditions that
turn out to be also sufficient.

Note that the theorem shows that in addition to (4), there
is another, non-obvious degree of freedom: for any LP π(B),
the WHT satisfies

H2n = π(B) ·H2n · π(BT ). (5)

This degree of freedom will later produce novel optimal WHT
algorithms for streaming implementations. Note that, in gen-
eral, π(BT ) 6= π(B)T .

4. SEARCH OF OPTIMAL ALGORITHMS

The number of WHT algorithms gnn−1gn grows exponentially
(e.g., it is about 1051 for n = 5), which makes enumera-
tion infeasible, except for very small sizes. Here we propose
a search algorithms that pushes feasibility into the region of
n = 5–8 to find evidence for the existence of better, unknown
algorithms for streaming.

We search for WHT algorithms that minimize a given im-
plementation cost that can be evaluated on each matrix P as
Cost (P ). We assume a function G` that can enumerate all
invertible `× ` bit matrices; G`(i) is the ith such matrix.

Our approach consists of two main steps. We first com-
pute a matrix C int = (cint

i,j)0≤i,j<gn−1
, containing the min-

imal cost of the internal permutations Cost (P1) + · · · +
Cost (Pn−1) for each possible pair of matricesQ1 = Gn−1(i)
and Qn = Gn−1(j). Then, we compute similarly a matrix
Cext containing the minimal cost of the external permutations
Cost (P0) + Cost (Pn). The optimal cost is then the smallest
element of C int + Cext.
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Log of size (n) 2 3 4 5 6 7

Log of str. width (k) 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

Radix-2 Pease 4 6 6 8 8 8 10 10 10 10 12 12 12 12 12 14 14 14 14 14 14
Radix-2 Iterative 4 6 4 8 6 4 10 8 6 4 12 10 8 6 4 14 12 10 8 6 4
Best with BP 4 6 4 8 8 4 10 10 8 4 12 12 12 8 4 14 14 12 12 8 4
Best with LP 4 6 3 8 5 3 10 6 5 3 12 ? ? ? 3 ? ? ? ? ? ?

Table 1. Number of stages of 2k−1 switches in WHTs of size 2n implemented with a streaming width of 2k.

Internal cost matrix C int. We first store in a matrix
C = (ci,j)0≤i,j<gn−1 the cost that a single internal permu-
tation π(P`) would have, given Q` = Gn−1(i) and Q`+1 =
Gn−1(j):

ci,j = Cost
((

G−1
n−1(i)

1

)
·
(
Gn−1(j)

1

))
.

The minimal cost that two consecutive internal permuta-
tions π(P`) and π(P`+1) would have, given Q` = Gn−1(i)
and Q`+2 = Gn−1(j) is

min
Q`+1

Cost (P`) + Cost (P`+1) = min
k
ci,k + ck,j .

This computation corresponds to the distance product [26] of
C with itself. Getting C int consists of performing this task
n−1 times: C int = Cn−1.We use a fast exponentiation algo-
rithm, leading to an arithmetic complexity inO(g3n−1 log(n)),
and a memory footprint in O(g2n−1) for this step.

External cost matrix Cext. The matrix Cext of the cost
of the external permutations can be obtained by trying all the
possible matrices for B, for each pair Q1, Qn. This step has
an arithmetic complexity in O(gng

2
n−1).

This search can be simplified for a given cost. For in-
stance, for the cost shown in the result section, a close formu-
lation for an optimal B was possible, making the second step
negligible compared to the first. Further, our algorithm can
be restricted to a subset of all linear permutations as shown in
the results.

5. RESULTS

We implemented the search algorithm using as building block
a specially designed linear algebra library for the efficient
computation with 8 × 8 bit-matrices. Our cost function first
minimizes the number of stages of RAM banks, and then the
number of switching stages. However, the arithmetic com-
plexity of the algorithm prevented us from completing the
search for n ≥ 6 (which would have taken years). Therefore,
we have also run the search restricted to permutations that are
BPs (thus reducing the complexity to O((n − 1)!3 log(n))).
This choice is also theoretically important as all-known WHT
networks (just as power-of-two FFT networks) are built using
BPs. We will see that BPs alone will not yield the optimum.

Number of RAM stages. The Pease algorithm, when
streamed, requires n stages of RAM banks, the iterative WHT

only n − k + 1 (using [9]). The minimal number of RAM
stages found by our search for both LPs and restricted to BPs
is dn/ke and thus better. Note that if k divides n this cost can
be achieved using an iterative radix-2k algorithm. For k not
dividing n our search finds novel solutions.

Number of switching stages. The minimal number of
switching stages over all RAM-optimal algorithms found by
our search is shown in Table 1. Note that in some cases, the
best algorithm that uses BPs has more switches than the itera-
tive algorithm. In these cases, the latter is not RAM-optimal.

Most interestingly, for streaming widths 2k 6= 2 our
search with LPs discovers novel WHT networks that improve
prior ones in both RAM usage and required switches. Consid-
ering BPs alone (as in all known network variants including
the large space in [5]) is not sufficient. Further, all optimal
networks found have a non-trivial B in (5).

Unfortunately, we did not manage to extrapolate from the
WHT networks found to optimal solutions for all sizes n and
k. To illustrate the difficulty consider the optimal network
found for n = 4 and k = 2 in Fig. 1(c).

6. CONCLUSION

We introduced an idea that is of both theoretical and practical
interest: namely, for an algorithm with regular structure and
a given implementation task one can enumerate all possible
variants to find the optimal solution. We considered the WHT
but the idea is in principle applicable to fast Fourier trans-
forms, sorting networks, Viterbi decoders, and other regular
algorithms. The first challenge is in characterizing the space
of algorithmic variants, which we did for the WHT and was
one main contribution. The other challenge is in extrapolat-
ing the optimal solutions found for small sizes to all sizes.
This remains an open question but our results for small sizes
strongly indicate that there is a class of yet undiscovered, and
non-obvious WHT algorithms with reduced RAM and logic
requirements in streaming implementation.
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