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Abstract—We present a generator for fast Fourier transforms
(FFTs) on hardware. The input of the generator is a high-level
description of an FFT algorithm; the output is a token-based,
synchronized design in the form of RTL-Verilog. Building on
prior work, the generator uses several layers of domain-specific
languages (DSLs) to represent and optimize at different levels
of abstraction to produce a RAM- and area-efficient hardware
implementation. Two of these layers and DSLs are novel. The
first one allows the use and domain-specific optimization of
state-of-the-art streaming permutations. The second DSL enables
the automatic pipelining of a streaming hardware dataflow
and the synchronization of its data-independent control signals.
The generator including the DSLs are implemented in Scala,
leveraging its type system, and uses concepts from lightweight
modular staging (LMS) to handle the constraints of streaming
hardware. Particularly, these concepts offer genericity over
hardware number representation, including seamlessly switching
between fixed-point arithmetic and FloPoCo generated IEEE
floating-point operators, while ensuring type-safety. We show
benchmarks of generated FFTs that outperform prior FFT
generators.

Index Terms—Fast Fourier transform; IP core; Streaming
datapaths; Hardware generation; Scala

I. INTRODUCTION

Due to its ubiquity in signal processing and communica-

tions, much effort has been devoted to the efficient implemen-

tation of fast Fourier transforms (FFTs) in hardware [1]–[10].

In particular, [10] proposes a generator capable of producing

implementations with different trade-offs in terms of perfor-

mance and resource consumption. This generator is built as a

back-end of Spiral, a generator of signal processing libraries

tuned for a specific platform [11], and operates with different

FFTs represented in a domain specific language (DSL) called

SPL. It then exploits different symmetries (or regularities) of

these algorithms to fold them temporally (iterative reuse, see

Fig. 1(b)) and spatially (streaming reuse, see Fig 1(c)), to

obtain a space of relevant designs. The desired design is then

output as RTL-Verilog.

In the meantime, the state of the art of the different compo-

nents needed in the FFT has improved. As examples, FloPoCo

[12] provides an open-source generator for pipelined floating-

point arithmetic with arbitrary precision, streaming implemen-

tations of linear permutations have reached optimality in terms

of latency, routing complexity and RAM bank usage [13],

[14], and a new architecture (Fig. 2) further reduces RAM

usage in some cases by fusing permutations [15]. However,

no generator to this date appears to combine these features

with the flexibility offered by [7]. One possible cause is the

difficulty of programming a generator capable of mapping a

high-level design (as in Figs. 1 and 2) to a concrete RTL

implementation. Some of the challenges are discussed next.

Mismatch of hardware and software datatypes. A first

difficulty, common among HLS tools, comes from the wide

diversity of datatypes that hardware design offers. The preci-

sion of (unsigned or signed) integers or fixed point numbers

is arbitrary, in contrast to a small set of choices in software.

The same applies to floating-point arithmetic, ranging from

IEEE754 to the space covered by FloPoCo [12] internal

representations, each with variable mantissa and exponent

width.

Two different evaluation times. A second issue is that

a given function may need to be either evaluated during

design generation or implemented in the resulting design,

or even partially evaluated during generation and partially

implemented.

For instance, the FFT involves multiplications with a set

of constants, called twiddle factors. A twiddle factor ti,j is a

complex number that depends on two parameters: the index i
of the element, and the number of the computation stage j.

In the case of non-iterative designs (Figs. 1(a) and 1(c)), the

parameter j is known at generation time, while in iterative

scenarios (Figs. 1(b) and 1(d)), the design would need to

implement a counter counting the number of datasets that

were already processed by the stage. Similarly, the parame-

ter i is known at generation-time for non-streaming designs

(Figs. 1(a) and 1(b)) for each different multiplier, while in

streaming designs (Figs. 1(c) and 1(d)), i depends on the

multiplier position, and on a timer that counts the number

of cycles elapsed since the dataset began to enter. As the

computation of a twiddle factor would typically involve a

ROM containing different possible values, it is essential to

exploit during generation as much as possible the structure of

i and j to reduce ROM consumption and DSP slices in case

of trivial multiplications.

A typical solution for handling this problem consists of

writing and maintaining different versions for each different

scenario, which is error-prone and time consuming.

Synchronization issues. The design requires pipelining

to handle the frequency required by the user. Keeping the

example of twiddle factors, an inspection of different FFT

algorithms shows that most constants are 1, i or −i, which

results in a trivial multiplication that does not require pipelin-
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Fig. 1. Radix-2 Pease-FFT datapaths (each from right to left) operating on 2n = 8 elements with different types of folding [7]. In (a), the design is not
folded and consists of 3 stages (each comprising a perfect-shuffle permutation, an array of butterflies F2 and an element-wise multiplication by constants),
followed by a bit-reversal permutation. (b) is horizontally folded: it implements only one instance of this stage that processes the dataset iteratively. (c) is
vertically folded: the dataset is input streamed in chunks of 2k = 4 elements (the streaming width) that enter during 2t = 2 consecutive cycles. (d) combines
both types of folding.
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Fig. 2. Radix-2 Pease-FFT dataflow operating with fused permutations.

ing. However, it is necessary in this case to add supplementary

registers if another non-trivial multiplication exists, to keep the

whole dataset synchronized.

Additionally, if the twiddle factor computation is done in

hardware, it may also require pipelining. As this computation

is independent of the input to the FFT, it is possible to initiate it

in advance to avoid impacting the global latency of the design.

However, this requires a precise cycle tracking to trigger the

counter and the timer at the appropriate time.

Handling the latency. As some of the designs produced

use a loop (Figs.1(b), 1(d), and 2), special attention must be

paid to guarantee that the latency of the inner structure is long

enough to avoid collision between the tail and the head of a

given dataset. Additionally, this inner latency determines the

minimal time separating two datasets, which must be reported

to the user.

Contributions. We address the above problems by signifi-

cantly extending the FFT generator presented in [15] using a

more principled design. We achieve superior results compared

to prior work. Specifically:

• We present a hardware generator for a design space of

FFTs. This generator is implemented in Scala [16] and

leverages Scala’s facilities for embedding DSLs, concepts

from lightweight modular staging (LMS) [17] to perform

optimization at the DSL levels, and Scala’s type system

DFTn

SPL

Streaming Block DSL

RTL-level DSL

Verilog

Folding

Implementation

Streaming width

Algorithm rewrite

Optimization

Simplification

Arithmetic representation

Fig. 3. The different layers of our generator.

to offer the flexibility discussed above.

• In the generator we use two novel DSLs to facilitate

streaming optimizations.

• We benchmark against the prior FFT generator showing

improvements in the performance/resource trade-off.

II. GENERATION PIPELINE

Our proposed generator receives as input the desired trans-

form size (a power of two), and some parameters (size, stream-

ing width, iterative reuse applied or not, hardware arithmetic

representation), and outputs the corresponding design in the

form of RTL Verilog. The generation consists of three layers

pictured in Fig. 3. Each of these layers employs a DSL to

represent, manipulate, and optimize the FFT at different levels

of abstraction. Each DSL is implemented as embedded DSL

inside Scala, and staging is used to allow manipulation. We

first give a brief overview and then discuss one layer in greater

detail in a subsequent section.
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A. SPL

The first step for implementing a DFT in hardware consists

of choosing a suitable algorithm, i.e., FFT, and follows [7].

We represent FFTs as breakdown rules that decompose a

DFT2n into smaller DFTs. These rules are represented in

SPL, a mathematical language that provides basic matrices

and operators on these matrices.

In our generator two such rules are used: the constant-

geometry radix-2r Pease FFT [18] used for iterative reuse,

and the radix-2r iterative Cooley-Tukey FFT used for designs

with streaming reuse only, and for the generation of the base

case 2r-FFT. As an example, the SPL representation of the

Pease FFT used in Fig. 1 is

DFT2n = R2n

n−1∏

j=0

(Tn−j−1 · (I2n−1 ⊗DFT2) · L2n) . (1)

In this expression, L2n and R2n are permutations (the perfect-

shuffle and the bit-reversal, respectively), Tj is a diagonal

matrix that performs element-wise complex multiplications

with the twiddle-factors, and I2n−1 ⊗ DFT2 represents 2n−1

parallel butterflies (each an addition and a subtraction).

Our implementation of this DSL in Scala is similar as in

[19].

B. Streaming-block DSL

In the second step, the SPL expression is formally folded

according to the streaming width, i.e., the number of elements

of the dataset that the design would be able to handle in each

cycle. This includes inserting the necessary datapaths for the

streaming permutations from [13], [15]. The DSL used thus

expands SPL to include the streaming width (similar to the

so-called Hardware-SPL in [7]), but also the following needed

streaming blocks:

• single array of switches,

• double array of switches,

• temporal streaming permutation, and

• array of multiplexers.

Fig. 4(a) illustrates the design of Fig. 2 expressed with this

DSL.

During this stage, a set of rewriting rules is used to simplify

the streaming blocks, particularly in the case of a fused

permutation. Fig. 4(b) shows the result of these optimizations

on our example.

C. Streaming-RTL DSL

In the final stage, the streaming blocks are transformed

into a dependency graph where each node, called a signal,
represents a hardware operator that outputs one value per

cycle. A signal may have zero (constant signals, inputs, timers

and counters), one (flip/flop registers used for pipelining), or

more parent signals. In the case of streaming reuse, this graph

may contain loops.

The graph is constructed and represented using a Streaming-
RTL DSL. Hardware datatypes, pipelining decisions and syn-

chronization issues are mostly abstracted from this language.

As an example, the implementation of the streaming block for

the twiddles Tj can be written within a few lines, and works

for every folding scenario and hardware datatype:

def T(inputs: Vector[Sig[Complex[Double]]], j: Sig[Int])
(implicit dt: HW[Complex[Double]]) = {
// We first declare a timer
// that ticks for the duration of a dataset
val timer = Timer(1 << t)

// we define a (non-staged) Vector containing
// all 2ˆn th roots of unity
val rootsOfUnity = Vector.tabulate(1 << n){i =>

val angle = -2 * Math.Pi * i / (1 << n)
Complex(Math.cos(angle), Math.sin(angle))}

// For each input signal,
inputs.zipWithIndex.map{case (input, p) =>

// we construct a signal corresponding to the index
// of a given element (concatenation of the t bits
// of the timer, and the k bits of the current port p),
val i = timer ++ p(Unsigned(k))

// we compute the corresponding twiddle factor,
val address = (i & 1) * ((i >>> (j + 1)) << j)
val twiddle = rootsOfUnity(address)

// and we return the product of the input signal
// with this twiddle factor
input * twiddle

} }

As can be seen, only a few elements in the body of this

function (Timer, Unsigned) may indicate that this code

represents a low-level hardware architecture. This improves

its readability and therefore its maintainability. However, all

signals implicitly carry an underlying hardware type (including

the corresponding size in bits), and timing information. All op-

erations are bit- and cycle-accurate, and software and hardware

type-safety is ensured. This DSL and its implementation are

detailed in the next section.

Once constructed and optimized, the resulting graph is

translated to a Verilog file.

III. A DSL FOR “STREAMING-RTL”

The streaming-RTL DSL is used to construct from a

streaming-block level representation of an FFT algorithm a

dependency graph that represents the final circuit. It offers the

following features:

• The nodes (signals) of the graph are manipulated exactly

as the values they would represent in a regular Scala

program. Only their type changes.

• The language provides genericity over the actual hard-

ware datatype and precision. However, the datatype can

be made explicit, offering bit-accurate control.

• Pipelining and synchronization of data-independent con-

trol is performed implicitly, but timing information and

manual pipelining remains available.

We discuss next the implementation of these abstractions,

using the features offered by the Scala type system.

A. Staging and LMS

The implementation of our DSL uses the concept of stag-
ing, in particular as done in LMS [17], but using our own

implementation. Staging allows to distinguish those parts of

the computation to be evaluated at generation time and those
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Fig. 4. Design of Fig. 2 expressed using the streaming block DSL. The necessary streaming permutation is expanded into switches and RAM banks (blue
rectangles). The optimization here “unrolls” some parts of the permutation to remove an array of multiplexer. Additionally, two arrays of switches were
grouped for later mapping to 4-to-1 multiplexers. These optimizations increase the throughput and reduce the area of the final design.

that will be implemented in hardware via a type annotation.

Specifically, this is done by changing a type T to the type

Sig[T]; the latter means that computations on this type will

be delayed, and may become part of the hardware implemen-

tation.

For example, in the following code, evaluating f1 yields the

sum of its parameters augmented by 18. f2, however, returns

an expression tree representing the computation on symbolic

inputs.

def f1(x: Double, y: Double) = x + y + 18
def f2(x: Sig[Double], y: Sig[Double]) = x + y + 18

This tree can then be translated (unparsed) to RTL-Verilog,

yielding an implementation of two adders (adding two signals

and an immediate).

This behavior is obtained through the following class hier-

archy (truncated for brevity):

abstract class Sig[T:HW]{
val dt = implicitly[HW[T]]
val delay: Option[Delay]}

case class Plus[T](lhs: Sig[T], rhs: Sig[T]) extends Sig[T]
case class Const[T:HW](value: T) extends Sig[T]
case class Register[T](input: Sig[T]) extends Sig[T]
...

The parent class Sig[T] takes as a type parameter the

type T of the expression it represents, and offers (lifts) the

same operators as a regular instance of T would. These lifted

operators return the corresponding node in the hierarchy of

Sig[T].

B. Abstraction over hardware datatypes

Following the concept of abstraction over data represen-
tation from [19], instances of Sig[T] (signals of T) carry

their underlying hardware datatype in the form of a typeclass

HW[T]. Concrete hardware datatypes are instances of classes

derived from HW[T], and contain the size in bits of this

datatype:

abstract sealed class HW[T](val size: Int)
case class Signed(_size: Int) extends HW[Int](_size)
case class Unsigned(_size: Int) extends HW[Int](_size)
case class FxP(integral: Int, fractional: Int)
extends HW[Double](integral + fractional)

case class IEEE(wE: Int, wF: Int)
extends HW[Double](wE + wF + 1)

case class FloPoCo(wE: Int, wF: Int)
extends HW[Double](wF + wE + 3)

...

A Scala Int could therefore be represented as a signed or

unsigned integer of a given size, and a Scala Double can

be represented using a fixed-point representation, a FloPoCo1

or an IEEE floating-point representation. This information is

passed to children nodes, and is used for the implementation

of the lifted operators and for the representation of constants

in the generated code.

As an example, depending on the underlying hardware type

of its parameters, the previous example f2 would seamlessly

• use fixed-point adders and represent 18 as a fixed-point

immediate, or

• use FloPoCo generated floating-point adders and repre-

sent 18 with the corresponding FloPoCo binary represen-

tation, or

• implement a conversion from an IEEE floating-point sig-

nal to a FloPoCo representation, implement the FloPoCo

adder, and implement the conversion back to an IEEE

representation.

C. Synchronization

Each signal has a delay field that represents the time needed

for this signal to output a valid value. It is used to check if

two operands are synchronized, and, if it is not the case, to

suitably delay one of them using registers.

1The FloPoCo generator is called upon instantiation of the corresponding
datatype class to generate the different arithmetic operators. The result of this
generation is then parsed to extract the latency of these operators.
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A delay consists of an integer representing a number of

cycles, and a timeline indicating to which “reference frame”

this delay belongs. This timeline can be

• the primary timeline, referring to the number of cycles

elapsed since the inputs arrived in the module,

• a loop timeline, referring to the number of cycles elapsed

since a dataset entered within a loop, or

• a floating timeline, used by data-independent signals

awaiting to be “synchronized” with another timeline.

As an example, a Register would have the same delay as

its input with a cycle number incremented by one, while an

input signal would have a delay of 0 on the primary timeline.

Loop timelines. In the case of iterative reuse, the streaming
product (the streaming block that creates the loop and the

multiplexer in Figs. 1(b) and 1(d)) creates a new loop timeline,

and implements its inner expression using this timeline. The

corresponding latency is then measured using the maximal

delay of the signals that are returned. This information is

then used during a second implementation, where a contingent

lack of latency is compensated by a FIFO, or an increase

of latency of a potential inner temporal permutation. The

streaming product then presents its outputs using the same

timeline as its inputs, delayed accordingly.

Floating timelines. In our generator, all data-independent

control signals rely on counters (that count the number of

datasets that have passed) and on timers (that count the

number of cycles elapsed since the beginning of the current

dataset). To ensure that such control signals become available

at the correct instant, each time a new counter or timer is

declared, a corresponding floating timeline is created. All data-

independent operations performed are then pipelined using this

timeline. However, when a signal with a floating timeline and

a signal with an external timeline need to be synchronized, a

new floating delay node is inserted with the expected delay.

As an example, we consider the following function f3:

def f3(x: Sig[Int]) = {
val t = Timer(8) + 3
x ˆ t}

This function creates a 3-bit timer, and adds the constant

3 to it. This operation implicitly adds a pipelining register,

yielding a signal t with a delay of 1 on the floating timeline

associated with the timer. The input signal x is then xored

with t. As these two signals are associated with different

timelines, a floating delay signal depending on t is created

with the same delay member as x, and f3 finally returns a

signal representing a XOR of x and the floating delay signal.

After the graph construction, the floating timeline is syn-

chronized with the other timeline such that all floating delays

can be implemented using the minimal number of registers. In

particular, this ensures that data-dependent signals never have

to be uselessly delayed. In our example, the floating timeline

is synchronized such that the floating delay is implemented

with a direct assignment. Thus, a delay of one cycle on the

floating timeline corresponds to the delay of x.

To prevent nodes of a floating timeline from being syn-

chronized with different incompatible timelines, and to avoid

circular dependencies between floating timelines, the first time

a node of a floating timeline is synchronized with a node from

another timeline, the floating timeline is marked as “being in

translation” with this other timeline, and an error is thrown if

a node is later synchronized with a third timeline. With this

relation, when the graph is built, timelines form a set of trees,

rooted by the primary and loop timelines. Floating timelines

are then synchronized starting from the roots.

Synchronization tokens. When the graph is unparsed,

token synchronization signals are generated to trigger the

different counters and timers. Tokens for loop timelines are

generated by “ORing” tokens of the primary timeline. As the

maximal throughput of the design is known at this time, tokens

of the primary timeline can be generated using consecutive

resettable timers instead of a resettable shift-register.

In our previous example, the timer declared within f3
receives its token one cycle before x becomes available,

ensuring that t is computed at the right time.

D. Smart constructors

Lifted operators are provided using implicit classes, which

make it possible to add a posteriori methods and operators to

existing objects.

For instance, the following class provides a + operator to

any Sig[T], when T is a numeric type:

implicit class NumericSig[T:Numeric](lhs: Sig[T]){
implicit val dt = lhs.dt
def +(rhs: T): Sig[T] = lhs + Const(rhs)
def +(rhs: Sig[T]): Sig[T] = {

ensure(rhs.dt == dt)
(lhs, rhs).synch match {

case (Const(x), Const(y)) => Const(x + y)
case (Zero(), _) => rhs
case (_, Zero()) => lhs
case (lhs, rhs) => dt match {
case _: FloPoCo => PlusFPC(lhs, rhs).register
case _: IEEE => (lhs.toFPC + rhs.toFPC).toIEEE
case _ => Plus(lhs, rhs).register

} } } }

Here, the operator first checks that the two operands have the

same hardware type (ensuring type-safety). It then synchro-

nizes them, and handles particular cases (if the two operands

are constants, or if one of them is the constant zero). Finally, it

creates a new Plus signal, according to the hardware datatype,

and adds pipelining registers.

These smart constructors are responsible for major opti-

mizations. As an example, the constructor of ROM signals

(implemented by adding a new apply method on indexed

sequences of T) checks every bit of the control signal, and re-

turns a smaller ROM in the case where one of them is constant.

Particularly, it would return a constant if the control signal is

constant, thus guaranteeing an efficient implementation of the

twiddle stage Tj , even in non-streaming or non-iterative cases.

IV. RESULTS

To validate the designs produced by our generator, we

benchmarked them against the equivalent circuits generated

with [7]. All designs operate on 32bits IEEE754 floating-

points, and were synthesized using Vivado 2018.1, targeting a

Virtex7 xc7vx1140 FPGA. The floating-point operators used
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TABLE I
RESOURCES USED BY NON-ITERATIVE RADIX-2 FFTS WITH A STREAMING WIDTH OF 4.

Size
Frequency (MHz) DSPs Area (Slices) Memory (BRAM tiles)

[7] Proposed [7] Proposed [7] Proposed Ratio [7] Proposed Ratio

8 326 345 16 16 4136 4954 1.19× 12 12 1.00×
16 326 345 32 32 6226 7105 1.14× 18 16 0.88×
32 326 345 48 48 8134 9131 1.12× 24 20 0.83×
64 326 345 64 64 10188 11181 1.09× 30 24 0.80×

128 326 310 80 80 12206 13188 1.08× 36 30 0.83×
256 326 310 96 96 13814 14869 1.07× 42 36 0.85×
512 326 310 112 112 15511 17023 1.09× 48 42 0.87×

1024 326 310 128 128 17204 19083 1.10× 54 48 0.88×
2048 326 310 144 144 19088 21111 1.10× 72 51 0.70×
4096 326 310 160 160 21184 23561 1.11× 108 66 0.61×
8192 326 310 176 176 23327 24551 1.05× 174 114 0.65×

16384 326 310 192 192 25513 26575 1.04× 322 194 0.60×
32768 317 308 208 208 27792 29752 1.07× 610 367.5 0.60×

TABLE II
RESOURCES USED BY ITERATIVE RADIX-2 FFTS WITH A STREAMING WIDTH OF 4.

Size
Frequency (MHz) DSPs Area (Slices) Memory (BRAM tiles)

[7] Proposed [7] Proposed [7] Proposed Ratio [7] Proposed Ratio

8 326 346 16 16 2250 2351 1.04× 10 4 0.40×
16 326 346 16 16 2296 2387 1.04× 10 4 0.40×
32 326 346 16 16 2397 2511 1.04× 10 4 0.40×
64 326 310 16 16 2375 2327 0.98× 10 6 0.60×

128 326 310 16 16 2355 2355 1.00× 10 6 0.60×
256 326 346 16 16 2372 2561 1.08× 10 6 0.60×
512 326 346 16 16 2332 2523 1.08× 10 6 0.60×

1024 326 343 16 16 2356 2333 0.99× 10 9 0.90×
2048 326 346 16 16 2380 2533 1.06× 20 8 0.40×
4096 326 346 16 16 2746 2529 0.92× 40 14 0.35×
8192 326 346 16 16 2516 2620 1.04× 76 26 0.34×

16384 326 334 16 16 2682 2770 1.03× 160 51 0.31×
32768 326 346 16 16 3752 3112 0.82× 315 102 0.32×

TABLE III
RESOURCES USED BY ITERATIVE RADIX-4 FFTS WITH A STREAMING WIDTH OF 8.

Size
Frequency (MHz) DSPs Area (Slices) Memory (BRAM tiles)

[7] Proposed [7] Proposed [7] Proposed Ratio [7] Proposed Ratio

16 326 346 48 56 7093 7964 1.12× 22 8 0.36×
64 326 345 48 56 7167 8491 1.18× 22 8 0.36×

256 326 310 48 56 7498 8355 1.11× 22 14 0.63×
1024 326 345 48 56 7794 8712 1.11× 24 14 0.58×
4096 326 345 48 56 7778 8722 1.12× 64 27 0.42×

16384 326 345 48 56 8382 8535 1.01× 248 86.5 0.34×

in our designs were generated using FloPoCo 4.1.2, targeting

a 700MHz Virtex6 platform.

Tables I, II and III show results after place-and-route for a

variety of designs. Each line presents, for a given transform

size, the maximal frequency obtained for our design and the

corresponding design from [7], as well as resources used in

terms of DSPs, logic slices and memory. A third column

shows the ratio between the two designs for the last two

measurements.

We observe that the number of BRAM tiles required drops

significantly with our generator. This is a direct consequence

of the streaming permutations being implemented with [13]

and, in the case of iterative designs, with the technics described

in [15]. Each of these methods theoretically allows to halve

the memory used for the streaming permutations, but does not

affect the number of RAM slices used as ROMs to store the

twiddle factors.

On the other side, the logic area consumption slightly

increases. The gain obtained using FloPoCo for the arithmetic

part and the use of 4-input multiplexers is counter-balanced

by the additional logic needed to implement memory conflict

avoidance as described in [13].

The number of DSPs used by the two designs is the same,

except for Table III because of the choice of another algorithm
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for the base 8-FFT.

V. LIMITATIONS AND RELATED WORK

Hardware DSLs implemented in Scala. The DSL we

propose is specifically crafted for the generation of streaming

Fourier transforms on FPGA, and provides only the primi-

tives and the amount of abstraction needed for this purpose.

This differentiates it from lower level hardware description

languages written in Scala. For instance, Chisel [20] can

represent a much wider variety of hardware designs, but re-

quires the pipelining registers to be manually added. Targeting

dataflow hardware, DFiant [21] proposes a dependency-driven

automatic pipelining similar to ours, but does not seem to

support automatic synchronization of data-independent con-

trols. It uses literal types to expose the hardware datatype and

precision to the user, thus enforcing type safety at compile-

time. In our case, the hardware datatype is abstracted (provided

via a type class), and hardware type safety is only ensured

at generation time. On the other hand, high-level synthesis

tools [22], [23] would offer even higher abstractions, up to the

dataset level, but would not allow the user to program at the

port-level, thus making the implementation of our permutation

streaming blocks difficult.
LMS [17] itself does not only provide staging, but offers a

whole toolchain to implement and compile DSLs. Particularly,

it grants automatic common subexpression elimination during

the construction of the dependency graph. However, in our

case, floating timelines reduce the efficiency of such an

optimization during the graph construction, and our tests have

shown that synthesis softwares such as Vivado already provide

it, thus limiting the use of implementing it. LMS provides as

well a facility to manipulate the generated graph, but as ours

already includes timing information, these manipulations are

limited to timing invariant ones (fusing ROMs that contain

identical values for instance), for which a direct implementa-

tion is possible. The main optimizations in our graph are made

during its generation, using smart constructors.
The pipeline proposed in [24] to generate matrix operations

illustrates the capability of LMS to target hardware. It shares

many similarities with ours, particularly its use of LMS and

FloPoCo. However, a significant part of the final RTL design

is outsourced to the external back-end LegUp [25].
Hardware generator for FFTs. Our generator only handles

the generation of power of two sized-FFTs. This represents

only a subset of the architectures that [7] can produce. Par-

ticularly, their generator is capable of handling non-power of

two sizes, and a wider range of signal processing transforms.
SPL and Spiral have as well been implemented and en-

hanced in Haskell [26] to produce efficient FFT implemen-

tations in C. A VHDL back-end for this compiler is being

developed.

VI. CONCLUSION

The overall theme in our work is the principled design

of domain-specific hardware generators using state-of-the-art

languages and language features. This paper followed this

theme with the design and implementation of a generator

for streaming FFTs inside Scala, using embedded DSLs and

the concept of staging. Specifically, our generator employed

a pipeline of three abstraction levels, corresponding to three

levels of DSLs. Two of them, the streaming-block DSL and the

streaming-RTL DSL are novel and were specifically designed

to include state-of-the-art components and enable the trans-

formations and optimizations needed in FFTs. The produced

FFTs improve over prior work. The generator should be easily

extendable to other DSP components related to FFTs. A web

version of our generator is available at [27].
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