
Memory-Efficient Fast Fourier Transform on Streaming Data
by Fusing Permutations

François Serre
serref@inf.ethz.ch

Department of Computer Science
ETH Zurich

Markus Püschel
pueschel@inf.ethz.ch

Department of Computer Science
ETH Zurich

ABSTRACT
We propose a novel FFT datapath that reduces the memory require-
ment compared to state-of-the-art RAM-based implementations
by up to a factor of two. The novelty is in a technique to fuse the
datapaths for the required perfect shuffle and bit reversal and is
applicable to an entire design space of FFT implementations with
varying degrees of reuse and number of input ports. We imple-
mented a tool to generate this FFT design space for a given input
size and to benchmark against prior work. The results show a re-
duction of half the RAM banks and/or half the logic complexity
used for the permutations. The technique for fusing permutations
is more generally applicable beyond the FFT.

CCS CONCEPTS
• Hardware → Digital signal processing; Application specific
integrated circuits; High-level and register-transfer level synthesis; •
Theory of computation → Circuit complexity;
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1 INTRODUCTION
The discrete Fourier transform (DFT) is a ubiquitous tool in signal
processing and beyond, used in image and speech processing, radar,
wireless communication (e.g., in the LTE standard), and many other
domains. Thus, fast and efficient implementations of fast Fourier
transforms (FFTs), in software and in hardware, and in particular
for embedded systems are of high importance. Much work has
been devoted to this topic and produced systematic methods to
design efficient FFT circuits that cover the entire space of design
tradeoffs from large and fast to small and slow [1–5]. In this paper
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(a) Pease FFT dataflow
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Figure 1: (a) Dataflow (right to left) of the radix-2 Pease FFT
for size 24; (b) “vertically folded” design for 2k = 22 input
ports; (c) in addition “horizontally folded” design in which
the first four stages are iteratively reused; (d) our contribu-
tion: design with two permutations fused.

we extend prior work with a novel method that can reduce memory
requirement by roughly one half. The method is more generally
applicable beyond FFTs: it designs a circuit that can perform a small
number of data permutations, which take the input streamed over
several cycles. Our contribution is best explained with an example.
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Example: FFT on 16 points. Fig. 1(a) shows the dataflow of a
radix-2 Pease FFT [6, 7] on 2n = 16 points. Note that all dataflows
in this paper are from right to left because of the corresponding
matrix notation introduced later. The FFT comprises four identical
stages (except for the twiddle scaling shown as little circles) of
eight parallel butterflies F2 preceded by a perfect shuffle, followed
by the bit reversal permutation. This dataflow can be used for a
fully-parallel implementation that has high throughput but also
high cost.

The cost can be reduced by exploiting the repetitive structure of
this FFT. A first method “folds the dataflow vertically” to obtain a
design like Fig. 1(b) [8–10]. Now the circuit operates on streaming
data, which means that the dataset arrives on 2k ports during 2t
cycles, where n = t + k . In the figure k = 2. However, this de-
sign requires streamed permutation circuits (represented with blue
boxes) between the butterfly stages. These require memory, as data
may now be permuted across cycles, and routing components, as
elements arriving on a given input port may need to be directed
to different output ports. Efficient, and sometimes proven optimal
methods, for implementing these have been developed in the lit-
erature. There are two classes of methods. One designs a circuit
that can handle any permutation [11, 12], parameterized by the
control logic at runtime. However, this flexibility comes at the price
of a higher area cost. The second class consists of datapaths that
are specialized for the desired permutation [13–17], which thus
reduces cost.

Back to the FFT, Figure 1(a) has another symmetry: the first
four stages are almost identical. Therefore, it is possible to “fold
the dataflow horizontally” to reuse over time a single hardware
stage [6]. The two types of folding can be combined [9, 10], resulting,
for example, in the design shown in Fig. 1(c). If fully folded in
both dimensions, the design is very compact. In the case shown
it contains only two butterflies, two complex multipliers, and the
hardware to perform the bit reversal (represented in Fig. 1(a) with
the blue box labeled with J4) and the perfect shuffle (labeled with
S4). The work in [9, 10] considers and generates the entire design
space given by varying the degree of folding in both dimensions.

The architecture we propose is shown in Fig. 1(d) and fuses the
hardware performing the two permutations to reduce cost, and in
particular the memory required. Note that the entire discussion in
this example can be extended to a Pease FFT of arbitrary radix. The
method for fusing the streaming permutation is more generally
applicable but the FFT was the motivation for this work.

Contributions. Our main contributions are as follows:

• We present a method to design a specialized datapath that
can realize a given (small) set of permutations, taking the
input streamed over several cycles. This datapath is cheaper
than one capable of performing all permutations. Themethod
is limited to the class of linear permutations, which contains
bit reversal, perfect shuffle, matrix transpositions, and per-
mutations needed in other FFTs beyond Pease, sorting net-
works, Viterbi decoders, filter banks, and other algorithms.
The datapath we design consists of basic logic and RAMs,
which is well-suited for implementation on FPGAs.

• As a major application, we propose a novel variant of a
streamed FFT architecture (as shown in Fig. 1(d)) that reduces
the RAMs required by prior work by up to one half.

• We implemented a generator [18] that can produce the entire
design space sketched in Fig. 1. The input is the FFT size 2n
and the number of input ports for the design on Fig. 1(d). The
output is RTL Verilog. The generator also supports different
radices larger than 2.

• We show benchmarks to prior work confirming the benefits
of the new FFT datapath.

2 STREAMED LINEAR PERMUTATIONS
As mentioned in the introduction, the bit reversal and the perfect
shuffle used in the Pease FFT are linear permutations. In this section,
we define this class, and review prior work on their implementation
as streaming hardware.

Perfect shuffle. The perfect shuffle is the permutation that
interleaves the first and second half of a list of 2n elements. It
appears in the first four stages of Fig. 1(a). For instance, if we
consider 8 elements indexed from 0 to 7, these get rearranged such
that the element i is mapped to the position 2i if i < 4, or 2i − 7
otherwise. If we write the binary representation of i as a column
vector ib of 3 bits with the most significant bit on top, this means(0
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We observe that the perfect shuffle rotates up the binary represen-
tation ib of its indexes.

More generally, for a set of 2n elements, the perfect shuffle maps
an index 0 ≤ i < 2n to the index j such that

jb = Sn · ib ,

where Sn is the cyclic shift matrix:

Sn =

©«
1
. . .

1
1

ª®®®®¬
. (1)

In summary, the invertible n×n bit matrix Sn defines the perfect
shuffle permutation, which we denote with π (Sn ), on 2n elements.

In the Pease FFT for a general radix 2r , the shuffle between stages
is given by Sn,r = Srn .

Linear permutations. In general, a linear permutation [19, 20]
π on 2n elements is a permutation such that there exists an n × n
invertible bit matrix1 P that satisfies, for 0 ≤ i < 2n ,

π : i 7→ j ⇔ jb = P · ib . (2)

Conversely, for any n × n invertible bit-matrix P , there is a unique
linear permutation that satisfies (2), and we denote it with π (P).

For a given n, there are a total of
∏n−1

i=0 (2
n − 2i ) such P , and

thus linear permutations. This means most permutations on 2n
points are not linear (e.g., linear requires that 0 is mapped to 0), but,
interestingly, many permutations in signal processing algorithms
are linear. Examples include permutations appearing in FFTs, fast
1mathematically, P ∈ GL(n, 2).

Session 7: Circuits and Computation Engines FPGA’18, February 25–27, Monterey, CA, USA

220



(a) RAM/SNW/RAM

(b) SNW/RAM/SNW

Figure 2: Perfect shuffle on 2n = 16 elements, streamed with
2k = 4 ports over 2t = 4 cycles. RAM banks permute in
time, i.e., across cycles. Switching networks (SNWs) permute
in space, i.e. across ports.

cosine transforms, Viterbi decoders, sorting networks, filter banks,
and many others.

The linear permutations considered in this paper are even bit-
index permutations, a subset of linear permutations for which P is
itself a permutation matrix, such as the matrix in (1). However, the
method we propose works with any linear permutation.

Bit reversal. Besides the perfect shuffle we consider the bit
reversal, which is defined as the permutation that reverses the bits
of the indices. Therefore, it is the linear permutation π (Jn ), where

Jn =
©«

1

. .
.

1

ª®®¬ .
In the Pease FFT of a general radix 2r , r |n (r divides n), the bit
reversal operates at coarser granularity and is given by Jn,r =
Jn/r ⊗ Ir . This means that every entry in Jn/r is multiplied by the
r × r identity matrix Ir .

Streamed linear permutations. In the streaming reuse struc-
tures (Figs. 1(b) and 1(c)), the linear permutations have to permute
input data streamed in 2t chunks of 2k elements, where 2n = 2t+k .
Prior work provides optimal RAM-based implementations of such
streaming linear permutation (SLP). The first one [17] uses an ar-
chitecture composed of a spatial SLP block consisting of a network
of 2×2-switches (SNW) framed by two temporal SLPs, each made
of an array of 2k RAM banks (See Fig. 2(a)). The second method
[16, 17] uses a spatial SLP, a temporal SLP, and another spatial SLP
(Fig. 2(b)). The corresponding generator is available at [18].

We explain these notions more formally next. If 2n data are
streamed through 2k ports over 2t cycles, n = t + k , then the
cycle during which an element arrives corresponds to the t most
significant bits of its index, while the port corresponds to the k least
significant bits. For instance, for t = k = 2, the element indexed
with

11b =
©«

1
0
1
1

ª®®¬ =
(

2b
3b

)

arrives during the second cycle on the third port. This suggests
blocking the matrix P of a linear permutation π (P) to be streamed
as

P =

(
P4 P3
P2 P1

)
, such that P4 is t × t .

Namely, an element arriving in cycle c on port p is output at port
p′ during the cycle c ′, where

p′b = P1pb + P2cb and (3)

c ′b = P4cb + P3pb . (4)
Spatial and temporal SLPs can now be identified using the struc-

ture of P [8]:
Spatial SLP. A permutation π (P) such that

P =

(
It
P2 P1

)
permutes only across ports, i.e., is spatial, and can be implemented
with a switching network (SNW) consisting of rank P2 stages of
2k−1 2×2-switches [16, 17]. If in addition, P2 = 0, the SNW thus
requires no switches and corresponds to a simple rewiring. In this
case we call π (P) steady.

Temporal SLP. If

P =

(
P4 P3

Ik

)
,

then π (P) permutes only across cycles, i.e., is temporal, and can be
implemented with an array of 2k RAM banks of 2t words with a
simple control logic [17]. Alternatively, methods based on graph
coloring can reduce the size of the RAM banks needed in certain
cases [12].

General SLP. A general linear permutation π (P) can now be
decomposed into three linear permutations using the algorithms of
[21]:

π (P) = π (L ·C · R) = π (L) · π (C) · π (R), (5)
where the factors alternate between spatial and temporal SLPs,
yielding the two possibilities in Fig. 2.

Cost and optimality. The first structure in Fig. 2(a) requires
2k+1 RAM banks of 2t elements, and rank(P2) · 2k−1 2×2-switches.
This design alwaysminimizes the number of 2×2-switches (Theorem
1 of [17]).

The second in Fig. 2(b) uses half the number of RAM banks, 2k ,
and max(rank(P2),n − rank P1 − rank P4) · 2k−1 switches, which
may be larger than in the first structure. It has the optimal logic
complexity for such a structure, uses the minimal number of RAM
banks, and has a minimal latency, if dual-ported memory banks
are used (respectively Theorem 2 of [17], Corollary 1 and Lemma 2
of [12]). If in addition [12] is used to implement the temporal SLP,
then the RAM size is also minimal.

Streaming the perfect shuffle.As an example, we consider the
case of the perfect shuffle permutation in (1) forn = 4. For t = k = 2
and using the SNW/RAM/SNW structure, the corresponding bit-
matrix S4 would be decomposed as

S4 =
©«

1
1

1
1 1

ª®®®¬ ·

©«
1

1 1
1

1

ª®®®¬ ·

©«
1

1
1

1 1

ª®®®¬ , (6)
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yielding the design shown in Fig. 2(b), consisting of 4 RAM banks of
2 word and 4 switches. More generally, implementing a streaming
perfect shuffle requires 2k banks of 2t−1 words, and 2k switches
[16].

3 STREAMING MULTIPLE LINEAR
PERMUTATIONS

The prior techniques from Section 2 are sufficient to implement
the streaming permutations, and thus the streaming FFTs shown in
Fig. 1(b) and 1(c). However, they cannot be used for the structure
in Fig. 1(d), where the same datapath has to handle two different
SLPs2. An immediate solution would be to use general streaming
permutationmethods, like [11] or [12]. They propose, respectively, a
structure as in Fig. 2(a) and 2(b), but replace the specialized SNWs by
complete, and thus more expensive permutation networks. In this
section, we propose a method to implement in hardware a datapath
capable of rearranging streaming data according to a small number
of given linear permutations, thus reducing the implementation
cost compared to a general solution.

Problem statement. Formally, we are given a list

π (P (0)),π (P (1)), . . . ,π (P (s−1))

of linear permutations, and a streaming width 2k . Our goal is to
implement an architecture that performs the permutation π (P (i))

on the ith dataset, streamed over 2k ports.
The main idea first decomposes each permutation as in (5), i.e.,

for all 0 ≤ i < s ,

π (P (i)) = π (L(i)) · π (C(i)) · π (R(i)),

where each factor is either temporal or spatial. The global architec-
ture can then be implemented by a sequence of blocks that each
perform either a sequence of temporal or a sequence of spatial SLPs.
We now consider these two cases and describe their implementa-
tion.

3.1 Sequence of Temporal SLPs
We assume a given list of bit matrices P (0), P (1), . . . , P (s−1), such
that all π (P (i)) are temporal, i.e.,

P (i) =

(
P
(i)
4 P

(i)
3
Ik

)
, 0 ≤ i < s .

RAM array. A structure that permutes a dataset i according to
π (P (i)) can be implemented using an array of 2k dual-ported RAM
banks of 2t words. Each of these banks have a write port connected
to one of the inputs of the block, and a read port connected to the
corresponding output (see Fig. 3(a)). The write and read addresses
ensure that data are correctly permuted (accordingly to (4)), and are
respectively controlled using two t-bits timers: c , that starts when
a new dataset arrives, and c ′, that starts when the output begins.

Latency. The output begins as early as possible, to minimize the
latency, for each different permutation. Therefore, c ′ is triggered
when c reaches the value corresponding to the maximal lifetime δi

2The direct sum, i.e. block diagonal composition of two linear permutations is in
general not a linear permutation.

(a) RAM banks array (b) Multiplexer array (c) Switching array

Figure 3: The basic blocks we use, here for a streamingwidth
of 2k = 4. (a) can pass any temporal permutation; (b) imple-
ments the two spatial steady SLPs π(It ⊕ J2) and π(In); (c)
implements (9).

of an element in the permutation:

δi = max
p,c

(c − d(i,p, c)), with d(i,p, c)b = P
(i)
4 cb + P

(i)
3 pb .

Conflict-free addressing.Besides permuting correctly the data,
the read and write addresses need to ensure a conflict-free access.
This means that an incoming element must not be written to a
place where an element of a previous dataset has not been read yet.
This issue occurs if δi < 2t . One solution is to use double buffering
[11, 16], but this requires doubling the size of each RAM bank.

The solution we propose is to always write an element of a
dataset where the same element of the previous dataset was read.
Namely, for the pth port, the first dataset received is written consec-
utively in the bank, i.e., at address cb . It is then read at the address
(P

(0)
4 )−1c ′b +(P

(0)
4 )−1P (0)3 pb , to perform the first permutation π (P (0)).

Then, the second dataset is written where the first dataset was read
to avoid conflicts, so at the address (P (0))−14 cb + (P

(0))−14 P
(0)
3 pb . It

is then read at the address

(P
(0)
4 P

(1)
4 )−1c ′b + (P

(0)
4 P

(1)
4 )−1P (1)3 pb + (P

(0)
4 )−1P (0)3 pb .

More generally, the ith dataset is written (resp. read) at the ad-
dressUicb + ui,p , (resp.Ui+1c ′b + ui+1,p ), whereUi is such that{

Ui+1 = Ui (P
(i mod s)
4 )−1,

U0 = It ,

and ui satisfies{
ui+1,p = Ui+1P

(i mod s)
3 pb + ui,p ,

u0,p = 0.

We store the values of (Ui ) in a ROM, controlled by a counter.
Using AND and XOR gates, the term Uicb is computed once for all
the banks. Then, this signal is XORed with ui,p for each bank p to
obtain the write address. The number of terms of (Ui ) stored in the
ROM is the least that guarantees conflict-free access (this length
is bounded by the period3 of (Ui )) The read address is obtained
similarly.

Alternative addressing. As remarked in [11], it is also possible
to store all the addresses, for every cycle, and for every permutation
in a bank. Using this technique with [12] allows to use banks of
3The period of (Ui ) is sq , where q is the smallest positive integer such that
(P (s−1)

4 P (s−2)
4 · · · P (0)

4 )−q = It .
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size maxi δi words. However, in our application, this value is close
to 2t due to the bit reversal.

3.2 Sequence of Spatial SLPs
We assume a given list of bit matrices P (0), P (1), . . . , P (s−1), such
that all π (P (i)) are spatial, i.e.,

P (i) =

(
It

P
(i)
2 P

(i)
1

)
, 0 ≤ i < s . (7)

This case is somewhat more complicated. We first design solutions
for two special cases from which we then build the solution for the
general case.

Multiplexer array. We first consider the case where all the
SLPs π (P (0)), . . . ,π (P (s−1)) are steady spatial permutations, i.e., for
every i ,

P (i) = It ⊕ P
(i)
1 =

(
It

P
(i)
1

)
. (8)

Since each such SLP is a different wiring, the list of those can be
implemented with an array of 2k d-input multiplexers, where d is
the number of unique matrices in the list (see Fig. 3(b)).

For instance, if the list contains two different matrices It ⊕ A
and It ⊕ B, it is possible to implement both using a structure where
each output port p is the output of a multiplexer connected to the
inputsA−1pb and B−1pb , and controlled by a counter. Of course, the
multiplexers connected twice to the same input can be simplified
to a simple wire, leaving an actual implementation consisting of��{p | A−1pb , B−1pb }

�� = 2k − 2k−rank(A
−1+B−1)

2-input multiplexers. If A = B, then A−1 = B−1 and thus the sum is
0 (since addition is modulo 2), which means the implementation
consists only of wires, as expected.

Switching array. We now consider another special case where,
for every i , P (i)1 = Ik and all elements of P (i)2 are zero, except for its
last row, which we denote with vTi . Formally, for every i ,

P (i) =

©«
It

1
. . .

vTi 1

ª®®®®¬
. (9)

In this case, (3) shows that π (P (i)) is the permutation that exchanges
each pair within a chunk of 2k elements, every time the correspond-
ing cycle c is such that cb · vib = 1.

Therefore, P can be implemented using an array of 2k−1 2×2-
switches. All these switches are controlled by the output of a single
s-input multiplexer that chooses among the results of the scalar
products cb ·vib , for 0 ≤ i < s . These scalar products are computed
using XOR gates on a timer cb .

Fig. 3(c) shows such a switching array that can implement any
spatial P (i) in (9) for k = 2.

General Spatial SLP. We return now to the general case (7),
which we will decompose into matrices of the form (8) and (9) to
implement it with the previous structures. We first consider the
matrixM of size k × st that concatenates the matrices P (i)2 :

M =
(
P
(0)
2 P

(1)
2 · · · P

(s−1)
2

)
.

Using Gaussian elimination, it is possible to find an invertible matrix
K of size k × k such that KM hasm = rankM non-zero rows at the
top. This implies that for every i the matrix KP (i)2 has the form

KP
(i)
2 =

©«

vT1,i
vT2,i
...

vTm,i
0
...

0

ª®®®®®®®®®®®®¬
,

where the m top rows are denoted with vTj,i . Note that some of
these may be zero for a given i . Direct computation yields now the
decomposition into the prior special cases:

P (i) =

(
It

K−1Sk−mk

)
·

©«
It

1
. . .

vT1,i 1

ª®®®®¬
(
It

Sk

)
·

...

©«
It

1
. . .

vTm,i 1

ª®®®®¬
(
It

Sk

)
·

(
It

KP
(i)
1

)
.

The corresponding architecture can now be read off from right to
left:

(1) a multiplexer array that permutes the wires as π (It ⊕ KP
(i)
1 )

for the ith dataset,
(2) a sequence of m switching arrays, parameterized, respec-

tively, byvm ,vm−1, . . . ,v1, each preceded by a perfect shuf-
fle of the wires, and

(3) a rewiring performing the permutation π (It ⊕ K−1Sk−mk ).
Cost. The structure that we derived consists of rankM arrays

of 2k−1 switches each, and one array of at most 2k multiplexers.

3.3 General sequence of SLPs
Nowwe consider the general case of arbitrary invertible bit matrices
P (0), P (1), . . . , P (s−1). Using [21], we get, for each i , the decomposi-
tion

P (i) =

(
It
L(i) Ik

) (
C
(i)
4 C

(i)
3

C
(i)
1

) (
It
R(i) Ik

)
,

which can be rewritten as

P (i) =

(
It
L(i) Ik

) (
C
(i)
4 C

(i)
3 (C

(i)
1 )−1

Ik

) (
It

C
(i)
1 R(i) C

(i)
1

)
.

This decomposition yields two sequences of spatial permutations,
and one of temporal permutations. These can be implemented in a
straightforward way using the previous structures.
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Figure 4: Datapath for the permutation block in Fig. 1(d).

Cost.The resulting architecture consists of onemultiplexer array
(as the leftmost sequence of spatial SLPs does not require one)
containing a maximum of 2k − 1 multiplexers, an array of 2k RAM
banks (except in the special case where all the SLPs are spatial),
and (rankML + rankMR ) · 2k−1 2×2-switches, where

ML =
(
L
(0)
2 L

(1)
2 · · · L

(s−1)
2

)
,

MR =
(
R
(0)
2 R

(1)
2 · · · R

(s−1)
2

)
.

Optimality. The number of RAM banks and the RAM latency
match the bounds given in [12], and are therefore optimal. The
number of switches, in the general case, depends on the different
degrees of freedom appearing in the decompositions4 [21], and no
optimality can be claimed. Of course, if the sequence of SLPs only
contains one unique SLP, the design we obtain only differs from
[17] by rewirings, and it therefore inherits the optimality properties
(Section 2).

Example: Fusing perfect shuffle and bit reversal. As an ex-
ample, we design the permutation block in Fig. 1(d) capable of
passing a perfect shuffle π (S4), and a bit reversal π (J4). Using the de-
composition (6) for S4, and the following (spatial/temporal/spatial)
decomposition for J4

J4 =
©«

1
1
1 1

1 1

ª®®®¬ ·
©«

1 1
1 1

1
1

ª®®®¬ ·
©«

1
1
1 1

1 1

ª®®®¬ ,
(10)

we derive a datapath that consists of two blocks that performs a
sequence of spatial SLPs around a block that performs a sequence
of temporal SLPs. For example, this sequence of temporal SLPs
contains the two middle permutations in (6) and (10):

π
©«
©«

1
1 1

1
1

ª®®®¬
ª®®®¬ and π

©«
©«

1 1
1 1

1
1

ª®®®¬
ª®®®¬ .

The resulting implementation consists of an array of two 2-input
multiplexers, two stages of two 2×2-switches each, an array of
four RAM banks, and two additional stages of two 2×2-switches
each (Fig. 4). Compared to an architecture performing only the bit
reversal derived using [17] (Fig. 5), it requires only two additional
2-input multiplexers.

More generally, an architecture that can stream both the bit
reversal and the perfect shuffle on 2n points with a streaming
width 2k differs from a bit-reversal-only datapath with the same
architecture by only 2k − 2 2-input multiplexers. In other words,

4More precisely, the decomposition in [21] is optimal for each permutation taken indi-
vidually, but as we compute independently these decompositions for each permutation,
there is no guarantee in general that the global sequence yields an optimal rank for
ML and MR .

Figure 5: Datapath for a bit reversal on 2n = 16 elements
streamed on 2k = 4 ports [17].

the additional support for the perfect shuffle is obtained almost for
free.

4 APPLICATION: PEASE FFT
To evaluate our fused permutation in a concrete case, we have built
a generator [18] capable of producing designs as in Fig. 1(d) for
Pease FFTs of arbitrary radix (Fig 1 shows the special case of radix
2). This generator takes as input the size 2n of the FFT, the number
of ports 2k , the bit-width of the input data, and the desired radix
2r , with r |n and r ≤ k ≤ n. It outputs the corresponding design in
the form of Verilog code. In this section, we briefly explain how
this generator works.

Derivation of the FFT architecture. The generator first con-
siders a Pease FFT algorithm of the corresponding radix, and the
sequence of permutations that have to be supported by the per-
mutation block of Fig. 1(d). These are all linear, and the block is
designed according to the techniques shown in Section 3. Butter-
flies and complex multipliers are then added to this permutation
block within a loop, as in Fig. 1(d). Some optimizations occur at this
time. For instance, with a radix 2, during the implementation of the
leftmost spatial permutation, it is possible to choose K such that
vj,i = 0, for i < n and j < min(t ,k). Therefore, the min(t ,k) − 1
leftmost arrays of switches can safely be “unrolled,” thus reducing
the latency within the loop, and therefore improving the global
throughput (see Fig. 6(b)). Only one stage of the leftmost spacial
permutation remains in the loop.

Compared to the classic streaming reuse architecture (Fig. 6(a)),
the design we obtain has an additional multiplexer stage and an
additional switching array stage in the loop, but it does not have a
dedicated structure to compute the bit reversal.

RTL graph. The design is then translated into an RTL graph,
where additional optimizations are performed including the follow-
ing:

• ROMs containing periodic values are simplified.
• ROMs containing a single value are replaced by a constant.
• Trivial arithmetic operations are simplified.
• A multiplexer with inputs coming from two multiplexers
sharing the same inputs are fused into a single multiplexer.

• A 2-input multiplexer whose inputs come from two other
multiplexers driven by the same control signal is fused to a
4-input multiplexer. This allows the efficient use of 6-input
LUTs on current FPGAs.

• ROMs containing the same values are paired.
Additionally, in this step the design is pipelined and synchro-

nized. In particular, if a control signal needs to be pipelined, the
corresponding counters/timers are triggered in advance if possible.
Otherwise, a reset value is computed for the registers that were
added. As the design contains a loop, it must also be ensured that the
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(b) Streaming iterative reuse with fused permutations

Figure 6: Radix-2 Pease FFT, iterative reuse with fused permutation n = 4,k = 2.

head of a dataset does not collide with its tail anywhere. Therefore,
the design is first generated in a sandbox to measure the latency of
its different parts. In a second pass, the latency of the inner tem-
poral permutation is then increased if needed. Conversely, if the
latency of the inner part of a loop is higher than the duration of the
dataset, it means that the amount of time (the gap) between two
datasets must be increased. This information is used in the second
pass for the temporal permutation to reduce as much as possible
the number of elements of (Ui ) (see Section 3) stored in ROM, while
ensuring conflict-free addressing in the RAM.

Once these simplifications have been performed, the design is
output as Verilog code.

Limitations.Our generator was implemented with a main focus
on the high level architecture and on the permutation part. It only
supports fixed-point arithmetic, and the pipelining decisions are
made with a basic heuristic. Using a more sophisticated approach
like FloPoCo [22] for the low level implementation could reduce
the area consumption of the produced designs, and add efficient
support for floating point arithmetic.

Another limitation of our generator concerns the twiddle fac-
tors. In the designs we produce, each complex multiplier has a
corresponding ROM that contains all the (real and imaginary) co-
efficients that it uses. A more distributed approach, along with a
simple online computation of these coefficients could reduce further
the number of BRAMs used.

5 RESULTS
In this section, we compare the cost and the performance of our gen-
erated FFT datapaths with other, state-of-the-art memory-efficient
FFT architectures.

Table 1 lists the benchmarks we compare against. We consider
two types of designs. The first type (A–D) is the prior iterative
reuse structure from [10] exemplified in Fig. 1(c), with different
solutions for the streaming permutations. The original [10] uses
the permutations from [16], which is A in the table. B and C use
different solutions that are not specific to linear permutations. Both,

A and B are available online at [23]. D improves the permutations
in [16].

The second type (E–G) is the proposed architecture exemplified
in Fig. 1(d), again with different solutions for the necessary fused
permutation block. E and F is what can be built with prior work
that provides a general streamed permutation network. G is our
proposed solution specialized to the two permutations that need
to be fused. Note that neither E or F has been used within an FFT
architecture as proposed here.

Table 1 analyzes the cost and performance for a radix-2 Pease FFT.
We discuss these next before we show results after place-and-route.

Cost. For the memory consumption, we list the RAM require-
ment for the permutation part, excluding the memory used to store
the twiddle factors. C theoretically should allow the use of banks of
2t−1 words for the perfect shuffle, but when used with the structure
in Fig. 1(c), the latency of the inner loop had to be increased to
avoid dataset collisions, thus requiring 2t words for all RAM banks.
The gains compared to A–E are a factor of two or four; the only
competitive method is F. However, the routing cost is at least a
factor of two higher, and even more for t smaller than k .

For the routing requirements, we assume that the methods B,
C, E, F using complete permutation networks implement them
with [24], i.e., using (k − 1/2) · 2k 2×2-switches. We counted 2
multiplexers per switch, and 2k multiplexers for the loop. Figure 7
plots the formulas in Table 1 for three different numbers of ports
and a range of FFT sizes. Our method is better compared to A–D and
F. Only E use less multiplexers5 for large values of t , but requires
four times more RAM banks.

In summary, we improve routing cost compared to F (and B and
C) and RAM cost compared to A–E, both by at least a factor of two.

Gap.Nextwe analyze theminimal number of cycles between two
datasets, i.e., the gap, which is the inverse of the throughput. In our
case, it is constrained by the duration of the input itself (2t cycles),
and by the time the dataset stays in the loop. In Table 1, we assumed
that the designs were all targeting ≈ 400Mhz on a Virtex 7. This

5Using the RAM/SNW/RAM architecture instead would have yield better routing
complexity, but for twice the amount of RAM.
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Ref Architecture Permutation Memory Routing (2 : 1Mux) Gap (cycles per transform)

A Fig. 1(c) [10] Püschel [16] 2k+1 banks of 2t+1 words (min(t, k ) + 3/2) · 2k+1 2t + (n − 1) ·max(2t , 2t−1 + 9)
B Fig. 1(c) [10] Milder [11] 2k+2 banks of 2t+1 words (k − 1/4) · 2k+2 ≥ 2t + (n − 1) ·max(2t , 2t−1 + ⌈k/2⌉ + 8)
C Fig. 1(c) [10] Koehn [12] 2k+1 banks of 2t words (k − 3/8) · 2k+3 2t + (n − 1) ·max(2t , 2t−1 + 2 ⌈k/2⌉ + 9)
D Fig. 1(c) [10] Serre [17] 2k+1 banks of 2t words (min(t, k ) + 3/2) · 2k+1 2t + (n − 1) ·max(2t , 2t−1 + 9)
E Fig. 1(d) (novel) Milder [11] 2k+1 banks of 2t+1 words k · 2k+1 ≥ 2t + n ·max(2t , 2t−1 + ⌈k/2⌉ + 8)
F Fig. 1(d) (novel) Koehn [12] 2k banks of 2t words (k − 1/4) · 2k+2 2t + n ·max(2t , 2t−1 + 2 ⌈k/2⌉ + 9)
G Fig. 1(d) (novel) Proposed 2k banks of 2t words (min(t, k ) + 1) · 2k+1 − 2 2t + n ·max(2t , 2t−1 + ⌈min(t, k )/2⌉ + 8)

Table 1: Comparison of different architectures using different permutation methods, for a radix-2 Pease FFT, for k > 1.

10

100

1000

3 4 5 6 7 8 9 10 11 12
n

C ProposedA, D

B, F

E

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Multiplixers in the datapath

10

100

1000

5 6 7 8 9 10 11 12 13 14
n

B, F

Proposed

C

A, D

Radix-2 Pease FFT, size 2n, 2k = 16 ports
Multiplixers in the datapath

E

10

100

1000

7 8 9 10 11 12 13 14 15 16
n

C

Proposed

A, D

B, F

Radix-2 Pease FFT, size 2n, 2k = 64 ports
Multiplexers in the datapath

E

Figure 7: Number of 2-input multiplexers in the datapath of a radix-2 Pease FFT, for different streaming widths. Lower is
better.
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Figure 8: Gap of a radix-2 Pease FFT in number of cycles between two transforms, for different streaming widths. Lower is
better.

requires a 4 cycles pipelining for the arithmetic part (butterfly and
multiplications), and one register every 2 multiplexers (a complete
permutation network has therefore a latency of ⌈k/2⌉ + 1 cycles).
Additionally, we assumed that all temporal permutations (even
when fused) were done using the minimal possible latency; a feature
that can easily be obtained using dual-ported RAM. However, with
[11] (B and E), the total “temporal latency” depends on the chosen
decomposition, and we can therefore only provide a lower bound.
The corresponding formulas in Table 1 are plotted in Fig 8. It appears

that, for n − k = t ≥ 5, the latency required to avoid two datasets
overlapping in the loop dominates the intrinsic inner latency of the
loop. Thus, the term 2t becomes the dominant term in themax, and
the gap becomes n · 2t for all streaming iterative reuse architectures
(A–D), and (n + 1) · 2t for the fused permutation structure (E–G).
Thus, as n, and hence t , increases the gaps of the different solutions
converge. The same is then also true for the throughputs.

Results after place and route. Among the prior FFT solutions
only A ([10]) is available online at [23]. We compare these designs
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Figure 9: Resources used by a radix-2 Pease FFT. Lower is better.
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Figure 10: Resources used by a radix-4 Pease FFT. Lower is better.

with our solution G after place-and-route. For completeness we
also implemented a variant of our generator [18] that produces the
FFTs in D, which reduces the RAM cost of A.

The area and the RAM consumption of different designs for a
radix-2 FFT are shown in Fig. 9, after place and route on a Xilinx
Virtex 7 xc7vx1140 using Vivado 2014.4, using an element size of 16
bits. We observe that, as the number of RAM bank does not depend
on n in the considered designs, the memory consumption stays
constant until the capacity of the BRAM is reached. As expected
from Table 1 our design requires fewer BRAMs; since the twiddle

factors are stored in BRAMs as well, the RAM usage is not exactly
halved. The logic area is roughly comparable and includes the
control, which was not included in Table 1. While our control logic
is arguably more efficient than storing all the switch configuration
and addresses for all cycles, it is more complex than the one used
in A or D, which explains why we do not require fewer slices.

Fig. 10 shows some results for a radix-4 FFT, which slightly re-
duces the number of multiplications needed but can only be folded
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at the granularity of DFT4 blocks, which themselves are imple-
mented using four butterflies. The overall behavior and comparison
is analogous to the radix-2 case.

Discussion. Because our main target is FPGA, which contains
BRAM modules, we compared our work with other RAM-based
permutation techniques. However, other approaches based on regis-
ters [13] or distributed buffers [15] could be beneficial on platforms
where grouping several memory elements does not improve the
cost (ASICs).

Hardware architectures to compute DFTs are a classic topic in
the literature, and other approaches that also use a RAM capacity
equal to the size of the dataset (2n ) exist. However, these works
are based on in-place algorithms [25], or consist of parameterized
architectures [26] that do not provide the same flexibility as a gen-
erated streamed architecture (for instance, the number of ports is
constrained by the radix used in the algorithm).
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6 CONCLUSIONS
We proposed a novel method to design a datapath capable of re-
alizing a number of fixed streamed linear permutations. As main
application we proposed a new variant of a folded Pease FFT that
requires only one permutation block for both, the internal shuffles
and the final bit reversal. While in some FFT applications, the bit
reversal can be omitted, in many others it cannot, e.g., if frequency
components need to be processed in order from low to high. For
those, our new architecture offers novel Pareto-optimal tradeoffs
between performance and logic/memory cost across an entire de-
sign space of FFTs given by the chosen radix and number of input
ports. These should directly translate to increased energy efficiency
for a wide range of resource-constrained embedded applications.
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