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ABSTRACT
We propose a method to automatically derive hardware
structures that perform a fixed linear permutation on
streaming data. Linear permutations are permutations
that map linearly the bit representation of the elements
addresses. This set contains many of the most important
permutations in media processing, communication, and
other applications and includes perfect shuffles, stride per-
mutations, and the bit reversal. Streaming means that
the data to be permuted arrive as a sequence of chunks
over several cycles. We solve this problem by mathemati-
cally decomposing a given permutation into a sequence of
three permutations that are either temporal or spatial. The
former are implemented as banks of RAM, the latter as
switching networks. We prove optimality of our solution in
terms of the number of switches in these networks.

Keywords
Streaming datapath; Data reordering; Connection network;
Matrix factorization; Stride permutation; Matrix transposi-
tion; Bit-reversal

1. INTRODUCTION
Many algorithms and applications implemented on FPGAs

require permutations or data reorderings as intermediate
stages. If all data are available in one cycle, a hardware im-
plementation is simply a set or wires as shown in Fig. 1(a)1.
However, if data arrive streamed in chunks over several
cycles as in Fig. 1(b), usually memory is required, as data
may be reordered also in time. Accordingly, the efficient
implementation becomes non-obvious [1, 2, 3, 4, 5].

In this paper, we present a method to implement streamed
linear permutations (SLPs) on 2n elements with proven min-
imal logic. Linear permutations are the permutations that

1Because of the mathematical formalism used later, we view
circuits with inputs coming from the right.
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Figure 1: Sketch of two implementations of the bit
reversal permutation on 23 elements. On the left,
the structure has as many ports as the dataset. Thus
a simple rewiring is enough. On the right side, data
are streamed on two ports. Therefore, the dataset
enters within 4 cycles (top), and is retrieved within
4 cycles (bottom).

operate as linear mappings on the bit representation of in-
dices. They include many of the most important occurring
permutations including stride permutations and the bit re-
versal. They are needed in fast Fourier transforms (FFTs;
see Fig. 2(a)), fast cosine transforms, sorting networks (see
Fig. 3(a)), Viterbi decoders, and many other applications.

Streamed means that the 2n elements arrive in chunks of
size 2k over 2t cycles, where n = k+t. Therefore, the result-
ing architecture has 2k input and output ports. In Fig. 1(b),
2t = 4 and 2k = 2. Streaming permutations enable the im-
plementation of designs that scale with large datasets (see
Fig. 2(b) and 3(b) for instance) while maintaining a high
throughput.

Our contribution is a systematic method to construct
SLPs with proven minimal logic under the assumption that
routing is done only by wires and 2×2-switches. Specifically:

• We prove a lower bound for the switching complexity
for an SLP, i.e., for the number of switches needed.

• We provide a method to derive a (switching)-optimal
SLP. The method decomposes a given linear permu-
tation into a sequence of spatial and temporal per-
mutations that can be implemented, respectively, as
(memoryless) switching networks and banks of RAM.
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Figure 2: On the top, dataflow of a Pease FFT on 24

elements. After a bit-reversal permutation, a set of
8 parallel DFTs on 2 elements followed by a stride
permutation is repeated 4 times. This graph can be
directly used for a direct fully-parallel implementa-
tion. On the bottom, the same implementation is
“folded” with k = 2, allowing to reduce the use of
DFTs to sets of 2 parallel units.
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Figure 3: A sorting network working on 23 elements
[6]. The “S2” blocks represent two input sorters.
On the top, a fully-parallel implementation. On the
bottom, the same implementation “folded” with k =
2, allowing to halve the number of sorters [7].

We show that this decomposition is equivalent to a
matrix factorization problem in which the minimiza-
tion of certain ranks of submatrices is equivalent to
minimizing the logic of the resulting circuit.

• Finally, we demonstrate our method by generating
streamed bit reversal permutations for a Virtex FPGA,
and by comparing our optimal solutions to prior art.

2. BACKGROUND AND NOTATION
We provide background on linear permutations, starting

with two special cases before we give a general definition.

Bit-reversal permutation. Used in FFTs, the bit-
reversal permutation has been studied extensively [8]. It
maps each element to the position given by reversing the
binary representation of its index. Formally, we denote the
binary representation of an index i with a column vector ib
of n bits, such that the most significant bit is at the top.
For example, if n = 3,

6b =

1
1
0

 ,

which the bit reversal maps by flipping upside down to ob-
tain 3b. Formally, it maps positions as ib 7→ i′b = Jn · ib,
where

Jn =

 1

. .
.

1

 . (1)

This n×n bit matrix describes how the bit reversal operates
“on the bits,” and should not be confused with the 2n × 2n

permutation matrix that encodes how it maps the data.
Perfect shuffle. The perfect shuffle on 2n elements in-

terleaves the first and the second half:

i 7→

{
2i, if 0 ≤ i < 2n−1,

2i− 2n + 1, if 2n−1 ≤ i < 2n.

On the bit representation it can be represented as cyclic
shift: ib 7→ i′b = Cn · ib, where

Cn =


1

. . .

1
1

 (2)

is a bit matrix.
If P is an n×n matrix that describes the way a permuta-

tion works on the binary representation of the elements, we
denote this permutation with π(P ). Formally, π(P ) is the
permutation of {0, . . . , 2n−1} such that, for all i in this set,

(π(P )(i))b = P · ib.

General linear permutations. Generalizing the previ-
ous special cases we consider an arbitrary invertible bit ma-
trix2 P . Then the mapping ib 7→ P ·ib defines a permutation
on {0, . . . , 2n − 1} that we denote with π(P ). We call such
permutations linear [9, 10] and there are

∏n−1
i=0 (2n − 2i) of

them. In particular, not every permutation on 2n elements
is linear; for example, linear permutations always leave the
first element unchanged (since 0b is the all-zero vector and
thus mapped to P · 0b = 0b).

For instance, if

Vn =

1
...

. . .

1 1

 ,

then π(V3) is the permutation: 0 7→ 0, 1 7→ 1, 2 7→ 2,
3 7→ 3, 4 7→ 7 7→ 4, 5 7→ 6 7→ 5. More generally, π(Vn)
is the permutation of 2n elements that leaves the first 2n−1

2Mathematically, P ∈ GLn(F2), where F2 is the Galois field
with two elements. Hence, the set of linear permutations is
a group, i.e., closed under multiplication and inversion.



elements unchanged, and that reverses the list of the others.
It occurs in fast cosine transforms [11].

Composition of linear permutations. Composing two
linear permutations corresponds to multiplying the associ-
ated matrices:

π(P ) ◦ π(Q) = π(PQ).

Additionally, we have π(In) = I2n and therefore3:

π(P−1) = π(P )−1.

As an example, every stride permutation on 2n elements
is a power r of the perfect-shuffle π(Cn). Therefore, these
are linear permutations as well with the associated matrix
Cr

n.

3. STREAMING LINEAR PERMUTATIONS
(SLPS): THEORY

Based on the prior formalism, we introduce the problem
of streaming linear permutations (as in Fig 1(b)) using bit
matrices. Then we discuss two special cases: temporal per-
mutations that do not permute across ports and thus can be
implemented using banks of RAM only, and spatial permu-
tations that only permute elements within each cycle and
thus can be implemented using switching networks (SNWs).
Our approach is then to decompose the general case into
these special cases, for which implementations can readily
be derived.

Finally, we prove a lower bound on the switching com-
plexity of a given permutation. This bound will later turn
out to be sharp and is one main contribution of this paper.

Matrix formalism. As in the introduction, we index
each element from 0 to 2n − 1 such that for 2k ports, the
element with index i = c · 2k + p enters during the cth cycle
on the pth input port. This means cb are exactly the upper
t = n−k bits of ib and pb are the lower k bits. For instance,
for t = 3 and k = 2, the element with the index

22b =


1
0
1
1
0

 =

(
5b

2b

)

will arrive during the 5th cycle on port 2.
Therefore, it is natural to block a given bit matrix P as

P =

(
P4 P3

P2 P1

)
, such that P4 is t× t. (3)

Hence, the associated streaming permutation maps the in-
put element that arrives on port p during cycle c to the
output port P1pb + P2cb at cycle P4cb + P3pb.

Next we introduce two special cases of SLPs that will form
the building blocks of our general solution.

Spatial permutations. We define (memoryless) spa-
tial permutations as SLPs that permute only within cycles.
Therefore, P must leave the upper t bits cb of each address
unchanged, i.e., satisfy P4cb + P3pb = cb, which yields the
form

P =

(
It
P2 P1

)
. (4)

3π is a group-homomorphism.

These can be implemented using a switching network that
consists of controlled 2×2-switches (see Fig. 4 later). The
cycle number controls the setting of the switches. The im-
plementation using a shortened Omega network will be dis-
cussed in Section 4.1.

If, in addition, the same reordering is performed in each
cycle, we call the spatial permutation steady. This is the
case if and only if P2 = 0. Such permutations can be imple-
mented with a simple rewiring without control (similar to
Fig. 1(a)), and we consider its cost to be zero.

Temporal permutations. These are the dual of spatial
permutations, in the sense that they leave the port number
unchanged but permute across cycles. Hence, these permu-
tations are represented by matrices of the form

P =

(
P4 P3

Ik

)
. (5)

They can be implemented using 2k banks of RAM as ex-
plained in Section 4.2.

General linear permutations: Switching complex-
ity. We implement general linear permutations π(P ) by first
decomposing them into temporal and spatial permutations,
i.e., by factoring P (blocked as in (3)) into matrices of the
form (4) and (5). We will later see that three such matri-
ces always suffice. Interestingly, with this assumption on
the building blocks we can already prove a lower bound on
the number of switches needed. The reason is that only the
switches can map between ports, and their number is thus
determined by“how much variety”in mapping between ports
is required across the different cycles.

Theorem 1. A full-throughput implementation of an
SLP for P with 2k ports that only uses 2×2-switches for
routing requires at least rkP2 · 2k−1 many switches, where
rkP2 denotes the rank of the matrix P2.

Proof. As the implementation has full throughput, each
element passes at most one time through a given switch. We
denote with `p,c the number of switches that the element
that arrives on port p at cycle c passes through.

If we accumulate across cycles for all inputs at port p, the
bit representations of the corresponding output ports, we
get

{P1pb + P2cb | 0 ≤ c < 2t} = P1pb + imP2.

This set (as a coset of direction imP2) contains 2rkP2 ele-
ments. This means that each input port has to communicate
with 2rkP2 different output ports.

Let now p′ be one of the 2rkP2 possible output ports for
an element from input port p. Further, let c̄ be an input
cycle of an arbitrary element which transits from p to p′.
The set of cycles for which an element transits from p to p′

is:

{cb | p′b = P1pb + P2cb} = c̄b + kerP2.

This set (as a coset of direction kerP2) contains 2t−rkP2

elements. As this number is independent from p′, the distri-
bution over the possible output ports is uniform. Therefore,
elements that arrive on port p must at least go through
rkP2 switches in average (since log2(2rkP2) = rkP2 bits are
needed to describe the output port):

1

2t

2t−1∑
c=0

`p,c ≥ rkP2, for every p. (6)
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Figure 4: An SNW consisting of two Omega network
stages. Each stage contains a perfect shuffle followed
by a column of 2k−1 switches controlled by a single
common bit. Here, the first stage is controlled by
a single bit of a counter, while the second one is
controlled by the sum of the two other bits of this
counter.

We now denote with s the number of switches in an im-
plementation. Since each switch has two inputs, two ele-
ments per cycle pass through it. In total, 2 · 2t elements
pass through a single switch. Hence∑

0≤c<2t

0≤p<2k

`p,c ≤ 2 · s · 2t. (7)

Combining (6) and (7), we get:

s ≥ 1

2t+1

2k−1∑
p=0

2t−1∑
c=0

`p,c ≥
1

2

2k−1∑
p=0

rkP2,

which yields the desired result.

As examples, we see that the number of switches for a
spatial permutation is at least rkP2 · 2k−1, whereas for a
temporal permutation that lower bound is 0, as expected,
since no switches are needed.

4. IMPLEMENTATION OF SPATIAL AND
TEMPORAL PERMUTATIONS

In this section, we explain how to implement the two spe-
cial cases of SLPs. In the next section we solve the general
case by optimally decomposing it into these.

4.1 Spatial Permutations
We show how to optimally implement a given spatial per-

mutation using a switching network (SNW) with rkP2 ·2k−1

2×2-switches, thus matching the lower bound of Theorem 1.
The network we construct is an Omega network [10] with
k − rkP2 stages removed. An optimal solution is already
given in [2]; our description here is somewhat simpler and
included for completeness.

A stage of an Omega network consists of a perfect shuffle
followed by a column of 2k−1 2×2-switches: see Fig. 4, which

shows 2 stages. We first consider one column of switches.
If these switches are all controlled by a common bit, then,
when this bit is set, pairs of elements are exchanged:{

p 7→ p+ 1 if p is even

p 7→ p− 1 if p is odd,
(8)

otherwise the column of switches leaves the data unchanged.
We add a counter c of t bits that is incremented at every

cycle. Then, for a fixed vector v of t bits, it is possible
to compute cb · v using xor gates, and we use the result to
control the column of switches. This structure performs the
permutation (8) when cb ·v = 1, and does nothing otherwise.
In other words, we have implemented π(Kv), where

Kv =


It

1
. . .

vT 1

 .

The perfect shuffle that precedes within the stage is a
steady spatial permutation, i.e., a rewiring. Therefore, with
our formalism, one stage in Fig. 4 is described by the matrix:

Sv = Kv ·
(
It

Ck

)
.

We now construct an implementation for a spatial per-
mutation given by (4). First, we find an invertible k × k-
matrix L such that LP2 has rkP2 non-zero lines vTi at the
top (Gauss elimination):

LP2 =



vT1
...

vTrkP2

0
...
0


.

Direct computation shows that:

P =

(
It

L−1Ck−rkP2
k

)
SvrkP2

. . . Sv1

(
It

LP1

)
.

This yields an implementation with rkP2 Omega network
stages framed by two rewirings. Thus, the number of
switches used is rkP2 · 2k−1.

Finally, 2×2-switches can easily be implemented using two
2-to-1 multiplexers. However, some platforms may support
larger multiplexers more efficiently. In this case, it is possi-
ble to group several switches of different stages as shown in
Fig. 5 with an example.

4.2 Temporal Permutations
We consider a temporal permutation associated with a

matrix (5), and implement it using 2k RAM banks, each
capable of storing 2t elements.

Implementation principle. Each port is associated
with one bank: the input port p is connected to the write
port of the pth bank, and the read port of this bank is con-
nected to the corresponding output port. A possible scheme
consists in writing incoming elements linearly in the bank
(using a counter c of t bits, as in the spatial permutation
case), and to retrieve them in the permuted order, i.e. at
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Figure 5: Implementation of the first output port of
a switching network using a 4-to-1 multiplexer.

the address P−1
4 cb + P−1

4 P3pb. This address can be com-
puted jointly for every banks using xor gates on the bits of
c. Then, inverters specialize these addresses for each bank
by adding P−1

4 P3pb.
However, depending on the permutation, this scheme may

not be suitable for full-throughput, as some elements of a
dataset may be written to a memory address that contains
an element of the previous dataset that has not been re-
trieved yet. Depending on the technology available for the
memory, different strategies can be used to overcome these
conflicts.

Single-ported RAM. In the case where it is only possi-
ble to write or to read an element during a cycle, [4] proposes
a double-buffering method. Each port is associated with two
RAM banks. One set is written in one of them, while ele-
ments of the previous set are retrieved from the second one.
This method doubles the memory consumption, and requires
an additional multiplexer per port, but has little overhead
in control complexity.

If the RAM allows a simultaneous read and write at the
same address, [5] proposes a method that uses only one bank
per port to perform a temporal permutation σ. Each incom-
ing element is written at the address where the element of
the previous set is being read. For example, if the first set is
written linearly in the memory, then the second set is writ-
ten where the first set is read, i.e. at address σ−1(c). The
ith set is then read at address σ−i(c).

In the case of linear permutations, this address becomes:

P−i
4 cb + (P−i

4 + · · ·+ P−1
4 )P3pb. (9)

This method is well suited in the case where P4 is the
identity, equal to its inverse, or more generally, if (P i

4)i has
a low period. In this case, all possible addresses can be
computed using xor gates, and a counter i suffices to control
a multiplexer choosing the appropriate address. Otherwise,
it becomes interesting to store the different values of P−i

4

and of (P−i
4 + · · · + P−1

4 )P3 in a ROM. In the worst case,
this ROM would contain (k + n) · t · 2t bits4. The address
(9) can then be computed using and and xor gates.

Dual-ported RAM. If the RAM used allows two simul-
taneous read and write at two different addresses, it is pos-
sible to absorb a potential array of 2×2-switches that would

4The period of (P−i
4 +· · ·+P−1

4 )i is at most twice the period
of (P i

4)i, which is itself at most 2t [12].

RAM bank 0

RAM bank 1

RAM bank 0/1

Figure 6: Merging two banks with a 2×2-switch in
a large dual-ported bank.

follow the temporal permutation. Two banks connected to
the same switch are fused into one large bank (see Fig. 6),
and the read/write addresses corresponding to the two ports
are swapped according to the control bit of the switch.

Reuse. If 0 < r ≤ t, and P has the form:Ir ∗ ∗
Ik

 ,

it means that the associated temporal permutation is peri-
odic with a period of 2t−r cycles5. Therefore, it is possible
to divide the memory consumption by 2r by implementing
only the permutation represented by the lower principal sub-
matrix, and reuse it 2r times6.

5. GENERAL LINEAR PERMUTATIONS
In this section, we discuss the implementation of a general

SLP π(P ) using the previous structures. This is equivalent
to decomposing P into spatial and temporal permutations,
i.e., permutations of the form (4) and (5).

A first idea is to use one spatial and one temporal permu-
tation. Indeed, if the block P4 is invertible, Gauss elimina-
tion yields

P =

(
It

P2P
−1
4 P1 + P2P

−1
4 P3

)(
P4 P3

Ik

)
.

This means that π(P ) can be implemented using a memory
block followed by an SNW. For the spatial part, rkP2P

−1
4 =

rkP2, i.e., our implementation will have rkP2 ·2k−1 switches,
which matches the lower bound of Theorem 1.

Conversely, it is possible to decompose an SLP using an
SNW followed by a memory block, if P1 is invertible. Again,
the construction will be optimal.

However, if neither P1 nor P4 are invertible, none of the so-
lutions above exist. Hence, three blocks are needed and two
possibilities exist, depicted in Fig. 7: the SNW-RAM-SNW
structure (Section 5.1), and the RAM-SNW-RAM structure
(Section 5.2).

5This is a consequence of π(Ir ⊕ A) = I2r ⊗ π(A) in the
notation of [2].
6This optimization has the theoretical advantage of yielding
an empty implementation for the trivial temporal permuta-
tion π(In).
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Figure 7: Two possible architectures for a streaming
permutation.

5.1 SNW-RAM-SNW
An SNW-RAM-SNW implementation (Fig. 7(a)) corre-

sponds to the factorization

P =

(
It
L2 L1

)(
M4 M3

Ik

)(
It
R2 R1

)
. (10)

Using our method of implementation, the number of switches
involved equals (rkL2 + rkR2)2k−1. Thus we want to min-
imize rkL2 + rkR2 for an optimal implementation. This
decomposition has been studied in [13], summarized in the
following theorem:

Theorem 2. If P is an invertible n×n matrix, then (10)
verifies:

rkL2 + rkR2 ≥ max(rkP2, n− rkP4 − rkP1).

Further, there exists a decomposition (10) reaching this
bound.

This theorem provides the minimal number of switches
possible for the assumed architecture SNW-RAM-SNW,
along with the existence of a solution reaching this bound.
An algorithm to compute this solution in cubic arithmetic
time in n is provided in [13]7.

However, if rkP4+rkP2+rkP1 < n, the solution has more
switches than suggested by Theorem 1 (which does not fix
the architecture). It turns out that in this case the next
architecture is optimal in terms of the number of switches,
at the price of twice the RAM.

5.2 RAM-SNW-RAM
A RAM-SNW-RAM implementation (Fig. 7(b)) corre-

sponds to the factorization

P =

(
L4 L3

Ik

)(
It
M2 M1

)(
R4 R3

Ik

)
. (11)

7The “rank exchange” section in [13] can be used in some
cases to balance the ranks of L2 and R2. For instance, if
rkL2 and rkR2 are both odd, it is interesting to reduce the
rank of L2 by one and increase the rank of R2 by one, thus
making them both even, and therefore easier to implement
using 4-input multiplexers.

A switching-optimal solution is guaranteed by the follow-
ing theorem:

Theorem 3. If P is an invertible n × n matrix, there
exists a decomposition (11) that verifies rkM2 = rkP2.

The existence of such a decomposition is again shown in
[13], with an algorithm that computes such a decomposition
in cubic arithmetic time in n.

In summary, the RAM-SNW-RAM solution is always op-
timal in terms of the number of switches. However, if rkP4+
rkP2 + rkP1 ≥ n, SNW-RAM-SNW offers a better solution
with half the RAM.

6. RESULTS
We evaluate our method in two ways. First, we consider

one particular, but important example: the streamed bit
reversal. We compare our two proposed architectures (one
of which is optimal) against a prior solution. Second, we
compare our streamed permutations against all four prior
solutions that we found in the literature. We show a table
summarizing the similarities and differences and illustrate
these with three example settings.

Example: Bit-reversal. We consider for k = t = n/2
the bit-reversal permutation π(Jn). Since P2 = Jk, Theo-
rem 1 states that at least k ·2k−1 switches are needed. How-
ever, Theorem 2 shows that an SNW-RAM-SNW structure
requires twice this amount: k · 2k switches, based on, for
example,

P = Jn =

(
Ik
Jk Ik

)(
Ik Jk

Ik

)(
Ik
Jk Ik

)
.

If, on the other hand, we choose a RAM-SNW-RAM struc-
ture, we can reach the minimal number of switches with, for
example,

P = Jn =

(
Ik Jk

Ik

)(
Ik
Jk Ik

)(
Ik Jk

Ik

)
.

The price is twice the RAM capacity. Note in both cases
the simplicity of the control logic: only a k-bit counter and
k inverters are needed.

Fig. 8 shows throughput versus area for a bit reversal on
211 16-bit elements for the two different architectures imple-
mented with k ∈ {1, . . . , 5}, i.e., 2 to 32 ports, and t = 11−k.
In this case, our SNW-RAM-SNW solution is equal to the
one proposed by [2]. For each of the two solutions we also im-
plemented the FPGA-specific optimization that uses 4-input
multiplexers as sketched in Fig. 5, which yields significant
area gains.

We compare against the RAM-SNW-RAM solution in
[14], which is more general in that it can handle (fixed)
arbitrary, also non-linear permutations. The target is a
Virtex-7 xc7vx1140tflgl1930 FPGA, using Xilinx Vivado
2014.4.

Comparison against prior work. Table 18 summarizes
the similarities and differences between our solutions (SNW-
RAM-SNW and RAM-SNW-RAM) and four prior works.
As the table shows, only ours provide guaranteed optimal
switching complexity at similar RAM cost.

To show the difference with an example, Fig. 9 compares,
for different streaming scenarios, the number of switches

8We suppose here that [5] uses a switch based Beneš per-
mutation network to implement their crossbars.
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Figure 9: Number of switches needed for 107 random SLPs with different architectures.

Architecture Permutations Memory Number of switches Optimal routing?

RAM/SNW/RAM Linear only 2k+1 banks of 2t words rkP2 · 2k−1 Always
SNW/RAM/SNW Linear only 2k banks of 2t words max(rkP2, n− rkP4 − rkP1) · 2k−1 Iff rkP4 + rkP2 + rkP1 ≥ n
[2] Linear only 2k banks of 2t+1 words ≥ max(rkP2, n− rkP4 − rkP1) · 2k−1 Generally not
[14] All 2k+1 banks of 2t+1 words (k − 1/2) · 2k Never for SLPs with k ≥ 2
[5] All 2k banks of 2t words (k − 1/2) · 2k+1 Never for SLPs
[15] All 2k banks of 2t words k · 2k Never for SLPs

Table 1: Comparison of different architectures using RAMs, in the case of a full-throughput SLP.

used by the different architectures. In (a) all specified SLPs
are considered, in (b) and (c), the full number is too large
and we chose 107 random samples instead. The pie charts
show the distribution of the number of switches needed for
these SLPs. As shown in the paper, one of our solutions
(the two leftmost in the table) always minimizes the num-
ber of switches needed. We observe the improvement over
prior work and also that for larger scenarios, most of the per-
mutations can be implemented optimally using SNW-RAM-
SNW. As we have seen, this is not true for the bit-reversal.

7. RELATED WORK
Switching networks for sets of permutations.

Switching networks that can execute all permutations
(in a non-streamed way) are a classic topic in computer
science [16, 17]. A variant of this problem occurred in
Section 4.1 where we implemented streamed spatial per-
mutations. Namely, we had to build a minimal switching
network capable of passing a subset of permutations.9 Our
solution was based on a reduced Omega network and we

9Specifically a coset Hg, where g is a linear permutation,
and H a subgroup of bit complement permutations, i.e.,
permutations that map an index i to ib + v, where v is a
given bit vector.

proved optimality. The complete Omega network has been
heavily studied in [9, 10, 18, 19]. Beyond that, the problem
of finding a minimal switching network to perform a given
set of permutations appears to have not received much at-
tention in the literature. An exception is the last section in
[18], which, however, produces only upper bounds for few
cases.

SNW-RAM-SNW structure. We now restrict our-
selves to the structure proposed in Section 5.1. This archi-
tecture has already been proposed for streamed linear per-
mutations in [2], which also proves optimality for the special
case of permutations that permute the bits of the indexes (a
group called PIPID in [10] or BP class in [19]), i.e., where P
has only one 1 in each row and column. In particular, this
includes stride permutations (2) and bit-reversal (1). For
these permutations, our solution is equal (Fig. 8 shows one
example).

However, [2] has two shortcomings that we resolve in this
paper. First, the method to derive an SNW-RAM-SNW
implementation is in general not optimal (see Fig. 9). Sec-
ond, [2] does not consider the alternative architecture RAM-
SNW-RAM, which, in some cases provides solutions with
fewer switches at the cost of twice the RAM. In this pa-
per we resolve both problems completely by establishing an
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architecture-oblivious sharp lower bound for the number of
switches needed and a technique for obtaining that optimal
solution using the SNW-RAM-SNW or RAM-SNW-RAM
architecture. We precisely characterize the cases where the
latter wins.

As a minor point, the solution in [2] uses a double-
buffering method to achieve full-throughput (as they men-
tion a memory requirement of 2n+1 words in the last sec-
tion). We propose an alternative method in Section 4.2 that
does not require additional RAM capacity.

This SNW-RAM-SNW architecture has also been used in
[5] to implement the streaming permutations needed in a
bitonic sorting network (which are all linear). They achieve
an efficient memory usage, but the method used (folding a
Clos permutation network) doesn’t harness the specificity of
the particular permutations they consider, and the resulting
design requires two complete switching networks (that allow
any permutation), which also makes the control logic much
more complex.

Similarly, [15] offers a solution based on a Beneš network
to build a streamed solution for any, also non-linear, given
permutation on 2n elements. Because it is more general, it is
not optimal for the linear case. Additionally, the generated
datapath is independent of the desired permutation. The
control logic is also more complex, as it uses ROM look-up
tables to store memory addresses and the control bit of every
switches for every cycles. This allows flexibility in the sense
that different permutations can be implemented simply by
modifying these tables, but is clearly suboptimal for a single
fixed permutation. In Fig. 9, we showed how our solutions
outperform this method.

RAM-SNW-RAM structure. The RAM-SNW-RAM
structure was considered in [14] to implement any (including
non-linear) streaming permutation of any size. A shortcom-
ing is that the central SNW has to be able to pass any spatial
permutation. Further, it considers only double-buffering for

its temporal permutations. We compared our different ar-
chitectures in Fig. 8 and 9.

Other architectures for streamed permutations.
Other approaches for building a fixed permutation technique
include [1], which proposes a register based implementation,
and [20], which is specific to implementing stride permuta-
tions. These two methods have in common that they use
registers to delay elements. In this paper we choose a more
regular architecture using RAM banks instead, which are
available on FPGAs, to spare logic.
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8. CONCLUSIONS
The main theoretical result of this paper is the exact

switching complexity of streamed linear permutations. We
established this result by first proving a lower bound, and
then providing a constructive method that achieves this
lower bound. Our method implements optimal SLPs using
switches and RAMs using two different architectures. One
always has optimal switching complexity, but requires a
RAM capacity of twice the size of the dataset. The other
proposed architecture is switching-optimal for some permu-
tations (that we precisely characterized) and requires only
half the RAM capacity. We have implemented the technique
to test on given permutations; but the main contribution
of the paper is the theory and the underlying key idea: to
phrase the problem as a specific matrix factorization and
apply techniques from linear algebra to construct solutions
and prove their optimality.
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sorting networks,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2016.
Accepted for publication.

[8] A. H. Karp, “Bit reversal on uniprocessors,” SIAM
Review, vol. 38, pp. 1–26, Mar. 1996.

[9] M. C. Pease, “The indirect binary n-cube
microprocessor array,” IEEE Transactions on
Computers, vol. 26, no. 5, pp. 458–473, 1977.

[10] J. Lenfant and S. Tahé, “Permuting data with the
Omega network,” Acta Informatica, vol. 21, no. 6,
pp. 629–641, 1985.

[11] G. Steidl and M. Tasche, “A polynomial approach to
fast algorithms for discrete Fourier-cosine and
Fourier-sine transforms,” Mathematics of
Computation, vol. 56, no. 193, pp. 281–296, 1991.

[12] M. Darafsheh, “The maximum element order in the
groups related to the linear groups which is a multiple
of the defining characteristic,” Finite Fields and Their
Applications, vol. 14, no. 4, pp. 992 – 1001, 2008.
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