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A B S T R A C T

Many algorithms used in hardware applications across disciplines, such as the fast
Fourier transform, the Walsh-Hadamard transform or sorting networks share a com-
mon structure. They consist of stages of parallel and identical processing elements
that each operates on two inputs with different data permutations in between. The
symmetry in this structure enables folding to an area-efficient in a streaming archi-
tecture that accepts the input over several cycles. However, necessary for folding are
streaming permutation circuits that require memory and routing components.

In this dissertation, we focus on the optimal implementation of these algorithms.
We provide lower bounds for the implementation of streaming permutations, and pro-
pose algorithms that produce solutions that match it (under certain assumptions). We
apply these algorithms in the context of a generator capable of implementing the hard-
ware applications previously mentioned. Finally, for a given problem, we address the
question of finding an optimal algorithm, i.e., an algorithm which streaming imple-
mentations are the cheapest to implement.

R É S U M É

De nombreux algorithmes utilisés dans les circuits intégrés, tels que la transformée de
Fourier rapide, la transformée d’Hadamard, ou les réseaux de tri, présentent une struc-
ture commune. Ils se composent de plusieurs couches d’éléments de traitement iden-
tiques fonctionnant en parallèle, et qui opèrent chacun sur deux entrées. Ces couches
sont elles-mêmes séparées par différentes permutations. Les symétries de cette struc-
ture permettent de «replier» l’algorithme sur lui-même, permettant ainsi d’obtenir
une architecture matérielle économe en ressources et qui travaille sur des données
étalées dans le temps. Ceci nécessite de permuter les données au sein de ce flux, ce
qui entraîne l’utilisation de mémoire d’une part, et d’éléments capables de diriger
spatialement les données d’autre part.

Cette thèse porte sur l’implémentation optimale de tels algorithmes. Nous définis-
sons plusieurs mesures sur les permutations de flux de données, notamment leur
entropie spatiale, puis montrons qu’elles représentent en fait la quantité de ressources
minimale nécessaire à l’implémentation de ces permutations (en terme de nombre de
multiplexeurs, ou de quantité de mémoire). Nous proposons ensuite des méthodes
qui, sous certaines conditions, permettent de construire des structures optimales. En-
fin, pour un problème donné, nous nous interressons à la recherche d’un algorithme
optimal, i.e. qui comporte les permutations dont l’implémentation nécessite le mini-
mum de ressources possible.
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1
I N T R O D U C T I O N

In 1822, Joseph Fourier was working on a thermodynamic law that now has his
name [55], stating that the heat flux ~φ in a body is proportional to the gradient
in temperature T in this body: ~φ = −λ · ~gradT . Using the conservation of energy
(C · ∂T/∂t = −div~φ), this yields the heat equation (Chapter 2 of [21]):

∂T

∂t
=
λ

C
·∆T .

Fourier noticed (Chapter 4 of [21]) that in the case of one spatial dimension1 x,

e−
λ
C ·t · cos x, e−3

2 λ
C ·t · cos 3x, e−5

2 λ
C ·t · cos 5x, . . .

were solutions T(x, t) of this equation. To get a general solution for an initial temper-
ature distribution T(x, 0) = T0 for −π/2 < x < π/2, Fourier proposed to decompose2

the latter function into a sum of trigonometric functions an cosnx. This allowed him
to express a general solution in the form of a sum of the particular solutions he found.

The discrete Fourier transform (DFT) is used similarly: it decomposes a discrete signal
x = (xt)06t<N ∈ CN into a sum of trigonometric sequences(y1

N
e2iπt/N

)
t

,
(y2
N
e4iπt/N

)
t

,
(y3
N
e6iπt/N

)
t

, . . . .

Applying a linear transform to x amounts to applying it to each of these trigonometric
sequences. In some cases, this technique can dramatically decrease the computational
complexity. For instance, a convolution on one of these sequences can be computed
using a single scalar multiplication [43].

The coefficients y = (yj)06j<N of the sum are given by y = DFTN ·x, where

DFTN = [ωij]06i,j<N, with ω = e−2iπ/N.

As in its origins, the DFT became a “hot topic” when an algorithm to compute it in
O(N logN) was discovered3 in 1965 [15], the Fast Fourier transform (FFT). It is now a
ubiquitous tool in signal processing and beyond, used in image and speech processing,
radar, wireless communication (e.g., in the LTE standard), and many other domains.
Thus, fast and efficient implementations of FFTs, in software and in hardware, and in
particular for embedded systems, are of high importance.

The FFT can be implemented using a so-called butterfly network as shown in Fig. 1.
Note that all dataflows in this document are from right to left because of the corre-
sponding matrix notation introduced later. It consists of stages of parallel and almost
identical blocks (the butterflies) that each operates on two inputs with data permu-
tations in between. Many other algorithms used in hardware applications in signal

1 Fourier solves first the problem in stationary conditions in Chapter 3. The problem shown here considers
a unique dimensionless spatial coordinate −π/2 6 x 6 π/2, with the boundary conditions T(−π/2, t) =
T(π/2, t) = 0.

2 He stated that any function was the sum of trigonometric functions, but this turned out to be false.
Finding conditions such that a function is the sum of its Fourier serie kept mathematicians like Parseval,
Dirichlet or Jordan busy throughout the XIXth century.

3 Gauß already discovered it in 1805 [26].
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Figure 1: Radix-2 Iterative Cooley-Tukey FFT dataflow (from right to left) operating on N = 16

elements.

processing, communication, and other domains, share this structure consisting of a
network of small processing elements and different intermittent permutations. Exam-
ples include the Walsh-Hadamard transform (WHT) [29], fast cosine and sine transforms
[2], sorting networks (SNs) [4, 79], permutation networks [6, 84, 61, 40, 78, 49], and oth-
ers.

The regular structure offers much flexibility in their hardware implementations and
thus there has been extensive work, most focusing on the FFT (e.g., [1, 14, 39, 16, 30,
32, 47, 25, 46, 50]. In particular, [50, 47, 88, 89] propose generators for FFTs and sorting
networks that are capable of producing an entire design space of implementations
with different trade-offs in performance and resource consumption. These generators
are built as a back-end of Spiral, a generator of signal processing libraries tuned for a
specific platform [64], and operates with different algorithms represented in a domain
specific language (DSL) called SPL. It then exploits different symmetries (or regulari-
ties) of these algorithms to obtain a space of relevant designs, as we explain next. The
desired design is then output as a register-transfer level (RTL) description in the Verilog
hardware description language.

Fig. 2a shows the dataflow of a radix-2 Pease FFT [81], a variant of the FFT derived
in [60], on N = 16 points. The FFT comprises four identical stages (except for the
twiddle scaling shown as little circles) of eight parallel butterflies F2 preceded by a
perfect-shuffle, followed by the bit reversal permutation. This dataflow can be used for a
fully-parallel implementation that has high throughput but also high cost.

The cost can be reduced by exploiting the repetitive structure of this FFT. A first
method, called streaming reuse, “folds the dataflow vertically” to obtain a design like
Fig. 2c [57, 50, 47]. Now the circuit operates on streaming data, which means that the
dataset arrives on K ports during N/K cycles. In the figure K = 4.

Fig. 2a has another symmetry: the first four stages are almost identical. Therefore,
it is possible to “fold the dataflow horizontally” to reuse over time a single hardware
stage [60] as in Fig. 2b. This is called iterative reuse.
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Figure 3: Sketch of two implementations of the bit reversal permutation on 23 elements. On
the left, the structure has as many ports as the dataset. Thus a simple rewiring is
enough. On the right side, data are streamed on two ports. Therefore, the dataset
enters within 4 cycles (top), and is retrieved within 4 cycles (bottom).

The two types of folding can be combined [50, 47], resulting, for example, in the
design shown in Fig. 2d. If fully folded in both dimensions, the design is very compact.
In the case shown it contains only two butterflies, two complex multipliers, and the
hardware to perform the bit reversal (represented in Fig. 2c and 2d with the blue
box labeled with J4) and the perfect shuffle (labeled with S4). The work in [50, 47]
considers and generates the entire design space given by varying the degree of folding
in both dimensions.

1.1 challenges

1.1.1 Streaming permutations

The permutations (or data reorderings) required between the butterfly stages are sim-
ple to implement in the case of non-streaming designs (Fig. 2a and 2b). All data
are available in one cycle and a hardware implementation consists of a set or wires
as shown in Fig. 3a. However, streaming designs (such as Fig. 2c and 2d) require
streamed permutation circuits (represented with blue boxes), as data arrive streamed
in chunks over several cycles as in Fig. 3b. Their implementation is non-obvious: they
require memory, as data may now be permuted across cycles, and routing components
like multiplexers or switches, as elements arriving on a given input port may need to
be directed to different output ports. Efficient methods for implementing these have
been developed in the literature. There are two classes of implementations. One de-
signs a circuit that can handle any permutation [45, 38], parameterized by the control
logic at runtime. However, this flexibility comes at the price of a higher area cost. The
second class consists of datapaths that are specialized for the desired permutation [59,
58, 31, 63, 23], which thus reduces cost.

Measuring implementation cost. The cost to implement a streaming permutation
can be measured in terms of latency, total memory capacity required, number of in-
dependent memory elements, or routing logic complexity. Lower bounds, and imple-
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mentation methods that minimize the first three of these measurements are known
[38], and it is therefore possible to quantify how hard a given streaming permuta-
tion is to implement in this respect, or to estimate how far a given implementation
is from optimality. However, quantifying routing complexity remains a challenge. If
some methods of implementation pay a particular attention to the number of routing
elements used [11, 12, 24, 63], knowing for instance the absolute minimal number of
2-input multiplexers that would be required to implement a given streaming permu-
tation is still an open question.

Best network for streaming. We already presented two different networks for com-
puting a DFT on 16 elements in Fig. 1 and 2a. The latter allows iterative reuse due to its
repetitive structure, but it is known that the permutations in the former are cheaper
to implement when streamed [46, 47]. A question that arises is, for a given stream-
ing configuration, which butterfly network would be the cheapest to implement. This
would require the identification of all possible networks to choose the best.

1.1.2 Implementation

The state of the art of the different components needed to implement streaming algo-
rithms keeps improving. We already discussed the streaming permutations, and the
existence of different methods to implement them. Arithmetic circuit unit is another
important component. For instance, FloPoCo [19] provides an open-source generator
for pipelined floating-point arithmetic with arbitrary precision However, no generator
to date combines these features with the flexibility offered by [47, 89]. One possible
cause is the difficulty of programming a generator capable of mapping a high-level de-
sign (as in Figs. 2c and 2d) to a concrete RTL implementation. Some of the challenges
are discussed next.

Mismatch of hardware and software datatypes. A first difficulty, common among
high-level synthesis (HLS) tools, is the wide diversity of possible datatypes that hard-
ware designs enable. The precision of (unsigned or signed) integers or fixed point
numbers can be chosen arbitrarily, in contrast to a small set of choices in software.
The same applies to floating-point arithmetic, ranging from IEEE754 to the space cov-
ered by FloPoCo [19], which offers arbitrary mantissa and exponent width.

Two different evaluation times. A second issue is that a given function may need to
be either evaluated during design generation or implemented in the resulting design,
or even partially evaluated during generation and partially implemented.

For instance, the FFT involves multiplications with a set of constants, called twiddle
factors. A twiddle factor ti,j is a complex number that depends on two parameters:
the index i of the element, and the index of the computation stage j. In the case of
non-iterative designs (Figs. 2a and 2c), the parameter j is known at generation time,
while in iterative scenarios (Figs. 2b and 2d), the design would need to implement a
counter counting the number of datasets that were already processed by the stage. Sim-
ilarly, the parameter i is known at generation-time for non-streaming designs (Figs. 2a
and 2b) for each different multiplier, while in streaming designs (Figs. 2c and 2d),
i depends on the multiplier position, and on a timer that counts the number of cy-
cles elapsed since the dataset began to enter. As the computation of a twiddle factor
would typically involve a ROM containing different possible values, it is essential to
exploit during generation as much as possible the structure of i and j to reduce ROM
consumption and DSP slices in case of trivial multiplications.
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A typical solution for handling this problem consists of writing and maintaining
different versions for each different scenario, which is error-prone and time consum-
ing.

Synchronization issues. Design usually require pipelining to handle the frequency
required by the user. Keeping the example of twiddle factors, an inspection of different
FFT algorithms shows that most constants are 1, i (the imaginary unit) or −i, which
results in a trivial multiplication that does not require pipelining. However, it is neces-
sary in this case to add supplementary registers if another non-trivial multiplication
exists, to keep the whole dataset synchronized.

Additionally, if the twiddle factor computation is done in hardware, it may also
require pipelining. As this computation is independent of the input to the FFT, it is
possible to initiate it in advance to avoid impacting the global latency of the design.
However, this requires a precise cycle tracking to trigger the counter and the timer at
the appropriate time.

Handling the latency. As some of the designs produced use a loop (Figs. 2b and
2d), special attention must be paid to guarantee that the latency of the inner structure
is long enough to avoid collision between the tail and the head of a given dataset.
Additionally, this inner latency determines the minimal time separating two datasets,
which must be reported to the user.

1.2 contributions

In this thesis, we address the problems above with the following contributions:

1.2.1 Streaming permutations

• We introduce a novel metric, the routing entropy, that allows to quantify the dif-
ficulty of implementing a given streaming permutation in terms of routing ele-
ments.

• We present two methods to implement streaming linear permutations, a class of
permutation that is ubiquitous in signal processing algorithms. The first one
yields implementations that have routing optimality, which means that no imple-
mentation can have less multiplexers. The second method yields memory optimal
implementations, which means that no implementation can have a lower latency,
a lower number of memory elements, or a lower total memory capacity. Addi-
tionally, these implementations have the lowest possible number of multiplexers
for the particular architecture we consider, and we precisely characterise the
cases where routing optimality is reached.

• We propose a method to implement a circuit that can pass several different linear
permutations. The circuit has memory optimality, and uses a low number of
multiplexers.

1.2.2 Streaming algorithms

• We propose a novel small FFT architecture that harnesses the circuit passing
several linear permutations to reduce the memory consumption.
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• We characterize and propose a method to enumerate all WHT algorithms con-
sisting of stages of columns of butterflies separated by linear permutations.

• We provide a method to search among them those that are the cheapest to imple-
ment. Using this method, we generate for small sizes novel butterfly networks
that reduce the number of independent memory elements needed, or the num-
ber of multiplexers required.

1.2.3 Hardware generator

We present a modular hardware generator that generates streaming designs for FFTs,
WHTs and sorting networks. It is implemented in Scala [51], and leverages Scala’s fa-
cilities for embedding DSLs, concepts from lightweight modular staging (LMS) [65] to
perform optimization at the DSL levels, and Scala’s type system to offer the flexibility
discussed above.

1.3 organisation of this dissertation

This thesis is divided into three parts. The first part considers the theory of streaming
algorithms: Chapter 2 discusses the implementation of streaming permutations; Chap-
ter 3 proposes a novel compact streaming FFT architecture, and Chapter 4 considers
the search for an optimal WHT streaming algorithm. In the second part (Chapter 5),
we present a prototype of a modular generator for streaming hardware. The third part
provides two linear algebra tools used in the first part, but that are also of interest
on their own: a novel matrix factorization that minimizes the rank of certain blocks
(Chapter 6), and a method to identify and enumerate a class of WHT algorithms.





Part I
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2
S T R E A M I N G P E R M U TAT I O N S

A fully parallel hardware implementation of algorithms on large data sets is usually
impossible due to the resources it requires. Therefore, the corresponding dataflows
need to be folded into a streaming architecture, which accepts the input over several
cycles. Particularly suited for folding are regular algorithms such as the fast Fourier
transform [60] (Fig. 1), Viterbi decoding, or sorting networks [37]. An example of the
latter for N = 8 elements is shown in Fig. 4a and an associated folded version with
streaming width K = 4 in Fig. 4b. The folded version halves the number of two input
sorters needed for its implementation [89].

Some permutations are trivial to fold due to their spatial periodicity (e.g., the two
rightmost permutations in Fig.4b), i.e., if they perform equal subpermutations on
blocks of size K. However, in general, implementing a streaming permutation is chal-
lenging, as it requires both routing between ports and delays across cycles. We as-
sume only 2-input multiplexers and single-ported RAMs as building blocks, which is
well-suited for FPGAs.

In this chapter, that extends the work presented in [68, 71], we quantify the diffi-
culty of implementing a streaming permutation, both in terms of memory and routing
logic. We then present a method to implement streamed linear permutations (SLPs) on
N = 2n elements with proven optimality. Linear permutations are the permutations
that operate as linear mappings on the bit representation of indices. They include
many of the most important occurring permutations including stride permutations
and the bit reversal. They are needed in fast Fourier transforms (FFTs; see Fig. 1), fast
cosine transforms, sorting networks (see Fig. 4a), Viterbi decoders, and many other
applications. Specifically:

• We prove a lower bound for the routing complexity for a general streaming
permutation, i.e., for the number of multiplexers or switches needed.

• We provide a method to derive optimal implementations of SLPs. The method
decomposes a given linear permutation into a sequence of spatial and temporal
permutations that can be implemented, respectively, as (memoryless) switching
networks and banks of RAM. We show that this decomposition is equivalent
to a matrix factorization problem in which the minimization of certain ranks of
submatrices is equivalent to minimizing the logic of the resulting circuit.

• Finally, we demonstrate our method by generating streamed bit reversal per-
mutations for a Virtex FPGA, and by comparing our optimal solutions to prior
art.

2.1 general streaming permutation

In this section, we give a formal definition of streaming permutations, and provide
lower bounds on the logic needed to implement them. The bounds are expressed in
terms of two quantities associated with a streaming permutation: its minimal latency

11
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Figure 4: A sorting network working on N = 8 elements [37]. The blocks with an arrow rep-
resent two input sorters. On the top, a fully-parallel implementation. On the bottom,
the same implementation “folded” with K = 4, allowing to halve the number of
sorters [89].

δσN,K and its routing entropy SσN,K. We then define two subclasses of streaming per-
mutations that will be crucial in our approach: temporal and spatial permutations.

2.1.1 Streaming permutation

Formally, we define a streaming permutation as a pair (σN,K), where σN is a permuta-
tion (or the corresponding permutation matrix1) of N words indexed by 0, . . . ,N− 1,
and K a positive integer that divides N (K|N). K is called the streaming width.

An implementation of a streaming permutation is a synchronous circuit that has K
input and K output ports, and that permutes a dataset of N elements according to σN.
The dataset enters sequentially in N/K chunks of K elements, and is output similarly
(see Fig. 3b). Therefore, the element that enters during the cth input cycle on the pth

input port is output during the c ′th output cycle on the p ′th output port, where

c ′K+ p ′ = σN(cK+ p).

Additionally, we say that an architecture has full throughput, if it is capable of han-
dling sequential datasets without interruption.

2.1.2 Examples

We provide a few example permutations that we consider:
Identity. The identity matrix of size N is denoted with IN. An implementation of

(IN,K) directly maps the elements arriving on its K inputs ports to its K output ports.

1 We use a row representation for permutation matrices: if [pi,j] represents σ, then pi,j = 1 if i = σ(j), and
0 otherwise.
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Cyclic shift. We denote with CN the cyclic shift matrix:

CN =


1
. . .

1

1

 . (1)

An implementation of (CN,K) would map the elements of a dataset as follows:

• The element arriving during the input cycle 0 (the first cycle) on the input port 0
(the first port) is output during the last output cycle (N/K− 1) on the last output
port (K− 1).

• Other elements arriving on the first port during the input cycle c are output on
the last port at the output cycle c− 1.

• All other elements, arriving on the port p during the input cycle c are output on
port p− 1 at the output cycle c.

Reversal permutation. The permutation that reverses its inputs is represented by
the matrix

JN =


1

. .
.

1

 .

An implementation of (JN,K) maps the element arriving on port p during the input
cycle c on output port K− p− 1 during the cycle N/K− c− 1.

Stride permutations. If R|N, we denote with LN,R the stride-by-R permutation matrix,
i.e. the matrix representing the transposition of a (N/R)× R-matrix stored in a row-
major order:

LN,R : i · N
R

+ j 7→ j · R+ i, for 0 6 i < R and 0 6 j < N/R. (2)

As an example,

L6,2 =



1 · · · · ·
· · · 1 · ·
· 1 · · · ·
· · · · 1 ·
· · 1 · · ·
· · · · · 1


.

Additionally, L2R,R is called perfect-shuffle.
If N = K2, the streaming permutation (LK2,K,K) “exchanges space and time”: an

implementation would map the element arriving on port p during the input cycle c
on the output port c during the cycle p.

Half-reversal permutation. If A and B are two matrices, we denote with A⊕ B the
direct sum of A and B, i.e. the matrix

A⊕B =

(
A

B

)
.
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Additionally, if (Mi)06i<n is a sequence of n matrices, we denote with
⊕n−1
i=0 Mi the

matrix

n−1⊕
i=0

Mi =


M0

M1

. . .

Mn−1

 .

For instance, IN ⊕ JN is the permutation matrix that represents the permutation that
leaves the first half of its inputs unchanged, and that reverses the second half of its
inputs. It occurs in fast cosine transforms [77]. Therefore, the streaming permutation
(IN ⊕ JN,N) would alternatively route its input ports directly to its output ports, or
reverse them.

2.1.3 Lower bounds

We now present four lower bounds that constrain any implementation of a given
streaming permutation (σN,K). Note that these are derived before we introduce any
method of implementation, thus highlighting their architecture agnosticism.

Minimal latency. We denote with δσN,K the maximal difference an element can have
between its input cycle c and its output cycle c ′:

δσN,K = max c− c ′ = max
06i<N

bi/Kc− bσN(i)/Kc.

Proposition 1. The latency of an implementation is bounded by δσN,K.

Proof. A shorter latency would mean that an element would be output before entering
the circuit.

As an example, we consider the permutation matrix

C6 =



· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·


,

and the streaming permutation (C6, 3). It satisfies, for 0 6 i < N

bi/Kc− bσN(i)/Kc =


−1, if i = 0,

1, if i = 3,

0, otherwise.

Thus, we have δC6,3 = 1, meaning that any implementation of this streaming permu-
tation has at least a latency of 1 cycle.

Minimal memory capacity. The minimal memory capacity that an implementation
must have is directly linked to the minimal latency:
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Proposition 2. An implementation requires a memory capacity of at least K · δσN,K words.

Proof. By definition, δσN,K 6 N/K. This means that during the first δσN,K input cycles,
K · δσN,K elements enter the circuit. As the output begins at least at the δth

σN,K cycle, the
circuit has to store them.

Our example (C6, 3) therefore requires a memory capacity of at least 3 words for
any of its implementation.

Minimal number of RAM banks. Due to the required throughput, when an imple-
mentation requires memory, this memory must be distributed into a minimal number
of banks:

Proposition 3. If δσN,K > 0, the memory used in an implementation needs to be distributed
across a minimum of K different banks.

Proof. As δσN,K > 0, all the K elements arriving during the first input cycle need to be
stored in memory. As a memory bank supports only one input element per cycle, K
of these are required.

Back to our example (C6, 3), this proposition shows that any of its implementation
requires at least 3 independent memory banks.

These three first bounds are sharp, as the implementations proposed in [38] match
them (if the registers used for pipelining are not considered). We call an implementa-
tion memory optimal if these three bounds are matched.

Minimal number of multiplexers. For a given streaming permutation (MN,K), we
consider the K×K-matrix

RMN,K = [rp ′,p],

where rp ′,p the number of elements of a dataset that arrive on the pth input port and
that leaves on the p ′th output port. Formally,

rp ′,p = |{(c, c ′) | c ′K+ p ′ = σN(cK+ p)}|.

It can be obtained by blocking MN into K×K blocks, and summing them all together.
This matrix is a semi-magic square [45]2, as a total of N/K elements of a dataset transit
through each input port p, and through each output port p. Dividing it by the magic
constant yields a bistochastic matrix:

ΩMN,K = [ωp ′,p] =
K

N
· RMN,K. (3)

We call this matrix the routing matrix of the streaming permutation.
In our example (C6, 3), we have

C6 =



· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·


,

2 RMN,K is denoted with πK(MN) in [45].
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and thus

RC6,3 =

· 1 ·
· · 1

· · ·

+

 · · ·· · ·
1 · ·

+

 · · ·· · ·
1 · ·

+

· 1 ·
· · 1

· · ·

 =

 · 2 ·
· · 2

2 · ·


= 2 ·C3.

The routing matrix of (C6, 3) is therefore ΩC6,3 = 1/2 · RC6,3 = C3.
Note thatωp ′,p is the probability that a random element (uniformly chosen) arriving

on input port p (resp. coming out of output port p ′) has to be output on port p ′ (resp.
originates from input port p).

We are interested in measuring “how much variety” in mapping between ports is
required across the different cycles. Therefore, it is natural to introduce the spatial
entropy of the streaming permutation as3

SσN,K = −
∑

06p,p ′<K

ωp ′,p log2ωp ′,p. (4)

Interestingly enough, this spatial entropy turns out to be a lower bound on the num-
ber of 2-input multiplexers that an implementation requires. The following theorem4

is an important contribution of this thesis; to the author’s knowledge, no such bound
currently exists in the literature.

Theorem 1. A full-throughput implementation of a streaming permutation (σN,K) that uses
only 2-input multiplexers for routing has at least dSσN,Ke multiplexers.

Proof. Given such an implementation, we first enumerate, for a given output port p ′,
the number of multiplexers `p ′ that the elements that arrive on this port had to go
through all together. We denote with Pp ′ the set of input ports these elements are
coming from.

As only 2-input multiplexers are used for routing, we can represent the different
paths the elements can take in the implementation using a direct acyclic graph (DAG)
where

• output ports are sinks,

• multiplexers are nodes, each of them having two outgoing edges named 0 and
1 that point to the multiplexer or input port that are connected to its two inputs,
and

• input ports are sources with one outgoing edge pointing at the multiplexer or
input port they are connected to.

Other elements (memory banks, buffers, . . . ) do not appear in this graph.
In this DAG, each input port in Pp ′ is reachable from the output port p ′. For each

of them, we pick one of the shortest path from the output port p ′, and encode it as
a sequence of bits, where each bit describes which multiplexer input was taken, from
the output port p ′ to the input port p. This defines a prefix code for the words in Pp ′ ,

3 We implicitly extend x 7→ x log2 x with 0 7→ 0.
4 Part of the proof is built on top of some unpublished ideas of Thomas Holenstein.
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Streaming permutation Minimal latency Routing matrix Routing entropy

(MN,K) δMN,K ΩMN,K SMN,K

(CN,K) 1 CK 0

(JN,K) N/K− 1 JK 0

(IN ⊕ JN,N) 0 1
2 (IN + JN) 2 · dN/2e

Table 1: Bounds and routing matrix for some streaming permutations.

where the length `p,p ′ of each code word is the minimal number of multiplexers from
the corresponding input port to the output port p ′. We have therefore:

`p ′ >
∑
p∈Pp ′

rp ′,p`p,p ′ =
N

K

∑
p∈Pp ′

ωp ′,p`p,p ′ .

This last sum can be seen as the expected word length of the code, where ωp ′,p would
be the probability of appearance of p. It is lower-bounded by the corresponding en-
tropy [76]:

`p ′ > −
N

K

∑
p∈Pp ′

ωp ′,p log2ωp ′,p = −
N

K

∑
06p<K

ωp ′,p log2ωp ′,p.

A multiplexer outputs at most one element per cycle. Thus, the multiplexers of the
circuit all together spend at least `p ′ cycles per dataset to route the elements that will
eventually arrive on port p ′, and therefore at least∑

06p ′<K

`p ′ > −
N

K

∑
06p,p ′<K

ωp ′,p log2ωp ′,p =
N

K
· SσN,K

cycles to route the complete dataset.
As the implementation has full-throughput, a complete dataset needs to be per-

muted everyN/K cycles. A minimum of SσN,K multiplexers are therefore required.

Corollary 1. A full-throughput implementation of a streaming permutation (σN,K) that uses
only 2×2-switches for routing has at least dSσN,K/2e of them.

Proof. A 2×2-switch can be implemented using two 2-input multiplexers.

As we will see later, this last bound is sharp for the subclass of streaming linear
permutations, and in all the examples given. This may not hold in the general case5.
We call an implementation that matches this bound routing optimal.

In our example, (C6, 3) has a spatial entropy of 0 bit. This means that an imple-
mentation doesn’t require any routing element. Other examples are shown in Table 1.

5 For example, we have lost some precision in the proof by removing ceiling operators for readability
reasons.
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2.1.4 Spatial and temporal permutations

The bounds in Section 2.1.3 rely on two quantities, δσN,K and SσN,K. In this section,
we identify streaming permutations for which the value of these numbers become 0.
This classification shares similarities6 with the one introduced in [57].

Spatial permutations. The first category of streaming permutation that we consider
are those that permute their elements within cycles:

Proposition 4. Given a streaming permutation (MN,K), the following propositions are equiv-
alent:

1. (MN,K) can be implemented without memory.

2. δMN,K = 0.

3. An implementation of (MN,K) only permutes elements within cycles.

4. MN is K × K-block diagonal: there exist N/K K × K permutation matrices
Q0, . . . ,QN/K−1 such that

MN =

N/K−1⊕
i=0

Qi. (5)

We call such a streaming permutation a spatial permutation.

Proof. 1 =⇒ 2 is the contraposition of Proposition 2.
2 =⇒ 3: We first compute the sum of the differences between all the input cycles

and the output cycles for an implementation (σN,K):∑
06i<N

c− c ′ =
∑

06i<N

(bi/Kc− bσ(i)/Kc)

=
∑

06i<N

bi/Kc−
∑

06i<N

bσ(i)/Kc

=
∑

06i<N

bi/Kc−
∑

06i<N

bi/Kc

= 0.

Assuming that δσN,K = 0 means by definition that c− c ′ 6 0. As a sum of negative
numbers is null only if all terms are null, this means that for all the elements, c−c ′ = 0,
i.e. that (σN,K) does not permute elements across different cycles.
3 =⇒ 4 is trivial.
4 =⇒ 1: A streaming permutation (MN,K) such that MN =

⊕N/K−1
i=0 Qi, where

Qi is a K× K matrix can be implemented using a (memoryless) K× K-permutation
network, such as the one described in [84]. It suffices to configure it to perform the
permutation Qc on its inputs during cycle c.

We denote with A⊗B the Kronecker product of A and B, i.e. the matrix

A⊗B =


a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB

 , where A = [ai,j]16i6p,16j6q.

6 We allow temporal permutations to perform a steady spatial permutation.
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If a spatial permutation (MN,K) satisfies

MN =

N/K−1⊕
i=0

Q = IN/K ⊗Q, (6)

where Q is a K× K matrix, then we call this streaming permutation a steady spatial
permutation. In this case, an implementation would perform the same permutation on
every chunk of a dataset at every cycle. It can therefore be implemented by connecting
directly the input ports to the output ports.

As shown in Table 1, (IN ⊕ JN,N) is an example of temporal permutation. IN ⊕ JN
has already the form (5). It can be optimally implemented using 2 · bN/2c 2-input
multiplexers as follows. If N is odd, then the output port bN/2c is directly connected
to the input port bN/2c. Other output ports p ′ are connected to a multiplexer that
routes elements from the input port p ′ during the first cycle, and from the input port
N− p ′ − 1 during the second cycle.

Temporal permutations. Conversely, we consider streaming permutations that al-
ways route elements coming from a given input port to the same output port:

Proposition 5. Given a streaming permutation (MN,K), the following propositions are equiv-
alent:

1. (MN,K) can be implemented without any routing element (multiplexer, switches).

2. SMN,K = 0.

3. ΩMN,K (3) is a permutation matrix.

4. There exist K N/K×N/K permutation matrices Q1, . . . ,QK such that

MN = IN/K ⊗ΩMN,K · LN,K ·
(
K⊕
i=1

Qi

)
· LN,N/K. (7)

We call such a streaming permutation a temporal permutation.

Proof. 1 =⇒ 2 is the contraposition of Theorem 1.
2 =⇒ 3: x 7→ x log2 x is negative for 0 6 x 6 1, and is null only for x = 0 and x = 1.

If SMN,K = 0, then we have∑
06p,p ′<K

ωp ′,p log2ωp ′,p = 0.

As a sum of negative numbers, it is null if and only if all summands are null, i.e.,
ωp ′,p ∈ {0, 1}. As ΩMN,K is by definition bistochastic, it is a permutation matrix.
3 =⇒ 4: If (MN,K) is such that ΩMN,K is a permutation matrix, then it means

that all the elements arriving on port p are routed to the port p ′, where ωp ′,p = 1.
Therefore, the streaming permutation(

(IN/K ⊗ΩMN,K)
−1 ·MN,K

)
=
(
IN/K ⊗ΩTMN,K ·MN,K

)
keeps elements on the same port. A computation then shows that

LN,N/K ·
(
IN/K ⊗ΩTMN,K

)
·MN · LN,K
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is (N/K)× (N/K)-block diagonal.
4 =⇒ 1: We consider a streaming permutation (MN,K), where

MN = IN/K ⊗ΩMN,K · LN,K ·
(
K⊕
i=1

Qi

)
· LN,N/K,

and will implement it without using any routing element.
In the case where δ = 0 (or equivalently, if Qi = IN/K for all i), then (MN,K) is

a steady spatial permutation and can be implemented as before. Otherwise, we will
implement it using K RAM banks, each capable of storing δ elements.

Each input port p is directly connected to the write port of the pth bank, and the
read port of this bank is connected to the output port that corresponds to the image
of p through the permutation associated with ΩMN,K.

Incoming elements are first written linearly in the bank. After δ cycles, the output
starts, and elements are retrieved in the permuted order, i.e. at the address that cor-
responds to the image of the output cycle through the permutation associated with
Q−1
p . As we are using single ported RAM banks, incoming elements are written at

the address where a previous element is being read, and the read address of this new
element must be computed accordingly. For example, if δ = K, the first set is written
linearly in the memory, then the second set is written where the first set is read, i.e. at
address corresponding to the image of the cycle through the permutation associated
with Q−1

p . The ith set is then read at the address corresponding to the permutation
Q−i
p . This address can be pre-computed for every banks, and stored in a ROM.

Streaming cyclic shift (CN,K) and streaming reversal (JN,K) are examples of tem-
poral permutations.

A possible decomposition (7) for (CN,K) is given by

CN = IN/K ⊗CK · LN,K · (CN/K ⊕ IN−N/K) · LN,N/K.

It can be optimally implemented using the method described in Proposition 5, with
a latency of 1 cycle. This implementation would consist of K memories of 1 word,
each having their write port connected to one input port. The first one would store
the element arriving during the first input cycle, and would output directly (without
delay) all the other elements. The first element would then be output during the last
output cycle (corresponding to the first input cycle for the next dataset). The other
memories would simply delay all elements by one cycle. The read ports of these mem-
ories would then be permuted using a hard-wired cyclic shift CK, and connected to
the output ports.

For the streaming reversal (JN,K), a possible decomposition (7) is

JN = IN/K ⊗ JK · LN,K · (IK ⊗ JN/K) · LN,N/K.

The method described in Proposition 5, yields an optimal implementation with a la-
tency of N/K− 1 cycles. This implementation would consist of K memories of N/K− 1

words, each having their write port connected to one input port. These memories
would write all the first N/K− 1 elements they receive, pass-through the last one, and
would then read elements in the reversed order. The read ports of these memories
would then be permuted using a hard-wired reversal JK, and connected to the output
ports.
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2.2 streaming linear permutation

As mentioned in the introduction, we focus on the subclass of streaming linear permu-
tations (SLPs). These are characterized by their permutation being linear, which we
define next. Then, we will see how the concepts of spatial and temporal permutations
translate to SLPs, before proposing methods to implement them optimally. Our work
builds on and extends [57, 63].

The size of linear permutations is always a power of two, N = 2n, and, as K|N, we
have K = 2k. For convenience, we also write 2t = N/K = 2n−k for the number of
cycles needed to input the dataset. Therefore, we have n = k+ t.

2.2.1 Linear permutations

We introduce the class of linear permutations using first some important examples.
Bit-reversal permutation. Used in FFTs, the bit-reversal permutation has been stud-

ied extensively [36]. It maps each element to the position given by reversing the binary
representation of its index. Formally, we denote the binary representation of an index
i with a column vector ib of n bits7, such that the most significant bit is at the top. For
example, if n = 3,

6b =

11
0

 ,

which the bit reversal maps by flipping upside down to obtain 3b. Formally, it maps
positions as ib 7→ i ′b = Jn · ib. Here, the bit matrix Jn describes how the bit reversal
operates “on the bits,” and should not be confused with the 2n × 2n permutation
matrix that encodes how the data is mapped.

In the Pease FFT of a general radix 2r, r|n, the bit reversal operates at coarser gran-
ularity and is given by Jn,r = Jn/r ⊗ Ir.

Perfect shuffle. The perfect shuffle L2n,2n−1 (2) is the permutation that interleaves
the first and second half of a list of 2n elements. It appears in the first four stages
of Fig. 2a. For instance, if we consider 8 elements indexed from 0 to 7, these get
rearranged such that the element i is mapped to the position 2i if i < 4, or 2i − 7
otherwise. If we write the binary representation ib, we get00

0

 7→
00
0

 ,

00
1

 7→
01
0

 ,

01
0

 7→
10
0

 ,

01
1

 7→
11
0

 ,

10
0

 7→
00
1

 ,

10
1

 7→
01
1

 ,

11
0

 7→
10
1

 , and

11
1

 7→
11
1

 .

We observe that the perfect shuffle cyclically rotates the binary representation ib of
its indexes.

7 ib ∈ Fn2 , where F2 is the Galois field with two elements, 0 and 1, considered as the two states of a bit.
Multiplying and adding bits respectively amounts to ANDing them and XORing them.
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More generally, for a set of 2n elements, the perfect shuffle maps an index 0 6 i < 2n

to the index j such that

jb = Cn · ib.

In summary, the invertible n×n bit matrix Cn defines the perfect shuffle permuta-
tion on 2n elements, which we denote with L2n,2n−1 = π(Cn).

Linear permutations. In general, a linear permutation [61, 40, 63] π on 2n elements is
a permutation such that there exists an n×n invertible bit matrix8 P that satisfies, for
0 6 i < 2n,

π : i 7→ j⇔ jb = P · ib. (8)

Conversely, for any n×n invertible bit-matrix P, there is a unique linear permutation
that satisfies (8), and we denote it with π(P).

For a given n, there are a total of
∏n−1
i=0 (2

n − 2i) such P, and thus linear permuta-
tions. This means most permutations on 2n points are not linear (e.g., linear requires
that zero is mapped to zero. Therefore, when n > 0, the permutation matrices J2n
and C2n represent non-linear permutations.). But, interestingly, many permutations
in signal processing algorithms are linear. Examples include permutations appearing
in FFTs, fast cosine transforms, Viterbi decoders, sorting networks, filter banks, and
many others.

For instance, if

Vn =


1
...
. . .

1 1

 ,

then π(V3) is the permutation: 0 7→ 0, 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 7 7→ 4, 5 7→ 6 7→ 5.
More generally, π(Vn) is the half-reversal permutation we saw earlier:

π(Vn) = I2n−1 ⊕ J2n−1 .

Properties of linear permutations. Composing two linear permutations corre-
sponds to multiplying the associated matrices:

π(P) ◦ π(Q) = π(PQ).

Additionally, we have π(In) = I2n and therefore9:

π(P−1) = π(P)−1.

As an example, every stride permutation on 2n elements L2n,2n−r is a power r of
the perfect-shuffle π(Cn). Therefore, these are linear permutations as well with the
associated matrix Crn. These are the permutations that appears between stages of a
radix 2r Pease FFT.

Additionally, π satisfies

π(P⊕Q) = π(P)⊗ π(Q).

8 Mathematically, P ∈ GLn(F2).
9 π is a group-homomorphism.
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As a consequence, a steady spatial SLP (6) can be written as (π(It ⊕Q), 2k), where
Q is a k× k invertible bit-matrix.

Bit-permutations. If the invertible bit-matrix P is itself a permutation, π(P) is called
a bit-permutation. Bit-reversals (π(Jn,r)) and stride permutations (π(Crn) = L2n,2n−r) are
examples of these. The “half-reversal” (π(Vn) = I2n−1 ⊕ J2n−1) is an example of linear
permutation that is not a bit-permutation. These are also known as PIPID in [40] or
BP class in [49].

Bit-permutations are closed under multiplication10, and there are n! of them.

Bit-permutations < linear-permutations < permutations.

2.2.2 Routing entropy for SLPs

If N = 2n data are streamed through K = 2k ports over N/K = 2t cycles, n = t+ k,
then the cycle during which an element arrives corresponds to the t most significant
bits of its index, while the port corresponds to the k least significant bits. For instance,
for t = k = 2, the element indexed with

11b =


1

0

1

1

 =

(
2b

3b

)

arrives during the second cycle on the third port. This suggests blocking the matrix P
of an SLP (π(P), 2k) to be implemented as

P =

(
P4 P3

P2 P1

)
, such that P1 is k× k. (9)

Namely, an element arriving in cycle c on port p is output at port p ′ during the cycle
c ′, where

p ′b = P1pb + P2cb and (10)

c ′b = P4cb + P3pb. (11)

Routing entropy. The block P2 is directly linked with the routing entropy of the
SLP:

Proposition 6. The routing entropy of an SLP (π(P), 2k) is

Sπ(P),2k = 2
k · rankP2.

Proof. If we accumulate across cycles for all inputs at port p, the bit representations of
the corresponding output ports, we get, using (10),

{P1pb + P2cb | 0 6 c < 2t} = P1pb + imP2.

This set (as a coset of direction imP2) contains 2rankP2 elements. This means that each
input port has to communicate with 2rankP2 different output ports. In other words,
each column of Ωπ(P),2k contains 2rankP2 non-zero elements.

10 These are a subgroup of linear permutations.
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Let now p ′ be one of the 2rankP2 possible output ports for an element from input
port p. Further, let c̄ be an input cycle of an arbitrary element which transits from p

to p ′. The set of cycles for which an element transits from p to p ′ is:

{cb | p ′b = P1pb + P2cb} = c̄b + kerP2.

This set (as a coset of direction kerP2) contains 2t−rankP2 elements. This means that
each non-zero element of Ωπ(P),2k has the value

ωp ′,p =
2t−rankP2

2t
= 2− rankP2 .

Using the definition of the routing entropy (4), we get:

SσN,K = −
∑

06p,p ′<K

ωp ′,p log2ωp ′,p

= −2k · 2rankP2 · 2− rankP2 · log2(2
− rankP2)

= 2k rankP2.

This directly yields routing bounds for SLPs, using Theorem. 1:

Corollary 2. A full-throughput implementation of an SLP (π(P), 2k) requires at least:

• 2k rankP2 2-input multiplexers, or

• 2k−1 rankP2 2×2-switches.

2.2.3 Spatial and temporal SLPs

In this section we characterize the SLPs that are spatial or temporal as defined in
Section 2.1.4. This can easily be done using the block structure of P in (9). Further,
we show how a spatial SLP can be optimally implemented, i.e., using the minimal
number of 2×2-switches.

Spatial SLPs. We already encountered the case of steady spatial SLPs, which were
characterized by the bit-matrix

P = It ⊕ P1 =
(
It

P1

)
.

Proposition 7. Spatial SLPs are the SLPs (π(P), 2k) that satisfy

P =

(
It

P2 P1

)
. (12)

Proof. Spatial permutations are the streaming permutations that permute only within
cycles. Therefore, P must leave the upper t bits cb of each address unchanged in (11),
i.e., satisfy P4cb + P3pb = cb, which yields the expected form.

We show how to optimally implement a given spatial permutation using a switching
network (SNW) with rankP2 · 2k−1 2×2-switches, thus matching the lower bound of
Corollary 2. The network we construct is an Omega network [40] with k − rankP2
stages removed. An optimal solution is already given in [63]; our description here is
somewhat simpler and included for completeness:
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XOR

Figure 5: An SNW consisting of two Omega network stages. Each stage contains a perfect
shuffle followed by a column of 2k−1 switches controlled by a single common bit.
Here, the first stage is controlled by a single bit of a counter, while the second one is
controlled by the sum of the two other bits of this counter.

Proposition 8. A spatial SLP (π(P), 2k) can be implemented optimally, i.e. using 2k−1 ·
rankP2 2×2-switches.

Note that this number matches the lower bound in Corollary (2).

Proof. A stage of an Omega network consists of a perfect shuffle followed by a column
of 2k−1 2×2-switches: see Fig. 5, which shows 2 stages. We first consider one column
of switches. If these switches are all controlled by a common bit, then, when this bit is
set, pairs of elements are exchanged:p 7→ p+ 1 if p is even

p 7→ p− 1 if p is odd,
(13)

otherwise the column of switches leaves the data unchanged.
We add a counter c of t bits that is incremented at every cycle. Then, for a fixed

vector v of t bits, it is possible to compute cb · v using xor gates, and we use the result
to control the column of switches. This structure performs the permutation (13) when
cb · v = 1, and does nothing otherwise. In other words, we have implemented π(Kv),
where

Kv =


It

1
. . .

vT 1

 .
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Figure 6: Implementation of the first output port of a switching network using a 4-to-1 multi-
plexer.

The perfect shuffle that precedes within the stage is a steady spatial permutation,
i.e., a rewiring. Therefore, with our formalism, one stage in Fig. 5 is described by the
matrix:

Sv = Kv ·
(
It

Ck

)
.

We now construct an implementation for a spatial permutation given by (12). First,
we find an invertible k× k-matrix L such that LP2 has rankP2 non-zero lines vTi at the
top (Gauss elimination):

LP2 =



vT1
...

vTrankP2

0
...

0


.

Direct computation shows that:

P =

(
It

L−1Ck−rankP2
k

)
SvrankP2

. . . Sv1

(
It

LP1

)
.

This yields an implementation with rankP2 Omega network stages framed by two
rewirings. Thus, the number of switches used is rankP2 · 2k−1.

Finally, 2×2-switches can easily be implemented using two 2-to-1 multiplexers.
However, some platforms may support larger multiplexers more efficiently. In this
case, it is possible to group several switches of different stages as shown in Fig. 6 with
an example.

Temporal SLP. Proposition 6 directly yields the structure of temporal SLPs:
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Corollary 3. Temporal SLPs are the SLPs (π(P), 2k) that satisfy

P =

(
P4 P3

P1

)
. (14)

The implementation of a temporal SLP is not fundamentally different from a general
temporal permutation as discussed in Proposition 5. However in practice, the compu-
tation of addresses is simpler, and can be performed using XOR gates, thus avoiding
the use of additional ROMs to store them.

2.2.4 General linear permutations

In this section, we discuss the implementation of a general SLP π(P) using the previous
structures. This is done by decomposing P into spatial and temporal permutations, i.e.,
permutations of the form (12) and (14).

A first idea is to use one spatial and one temporal permutation. Indeed, if the block
P4 is invertible, Gauss elimination yields

P =

(
It

P2P
−1
4 P1 + P2P

−1
4 P3

)(
P4 P3

Ik

)
.

This means that π(P) can be implemented using a memory block followed by an
SNW. For the spatial part, rankP2P−14 = rankP2, i.e., our implementation will have
rankP2 · 2k−1 switches, which matches the lower bound of Corollary 2.

Analogously, if P1 is invertible, it is possible to decompose an SLP using an SNW
followed by a memory block:

P =

(
P4 + P3P

−1
1 P2 P3

P1

)(
It

P−11 P2 Ik

)
. (15)

Again, the construction will be optimal.
However, if neither P1 nor P4 are invertible, none of the solutions above exist. Hence,

three blocks are needed and two possibilities exist, depicted in Fig. 7: the SNW-RAM-
SNW structure (Section 2.2.4), and the RAM-SNW-RAM structure (Section 2.2.4).



28 streaming permutations

Switching network Switching networkMemory block

RAM bank

RAM bank

RAM bank

RAM bank

(a) SNW-RAM-SNW

SNWMemory block Memory block

RAM bank 0

RAM bank 1

RAM bank 2

RAM bank 3

RAM bank 4

RAM bank 5

RAM bank 6

RAM bank 7

(b) RAM-SNW-RAM

Figure 7: Two possible architectures for a streaming permutation.

SNW-RAM-SNW. An SNW-RAM-SNW implementation (Fig. 7a) corresponds to
the factorization

P =

(
It

L2 L1

)(
M4 M3

M1

)(
It

R2 R1

)
. (16)

Using our method of implementation, the number of switches involved equals
(rankL2 + rankR2)2k−1. Thus we want to minimize rankL2 + rankR2 for an optimal
implementation. This decomposition is studied in Chapter 6, summarized in the
following theorem:

Theorem 2. If P is an invertible n×n matrix, then (16) satisfies:

rankL2 + rankR2 >max(rankP2,n− rankP4 − rankP1), and

rankM3 = rankP3.

Further, there exists a decomposition (16) reaching this bound.

This theorem yields the minimal number of switches possible for the assumed ar-
chitecture SNW-RAM-SNW:

max(rankP2,n− rankP4 − rankP1) · 2k−1, (17)

along with the existence of a solution reaching this bound. An algorithm to compute
this solution in cubic arithmetic time in n is provided in Chapter 6

11.

11 The “rank exchange” section in Chapter 6 can be used in some cases to balance the ranks of L2 and R2.
For instance, if rankL2 and rankR2 are both odd, it is interesting to reduce the rank of L2 by one and
increase the rank of R2 by one, thus making them both even, and therefore easier to implement using
4-input multiplexers.



2.2 streaming linear permutation 29

If rankP2 > n− rankP1− rankP4, then Theorem 2 yields a routing-optimal solution.
However, if rankP2 < n − rankP1 − rankP4, the solution has more switches than
suggested by Corollary 2 (which does not fix the architecture). It turns out that in this
case the next architecture is optimal in terms of the number of switches, at the price
of twice the RAM.

RAM-SNW-RAM. A RAM-SNW-RAM implementation (Fig. 7b) corresponds to the
factorization

P =

(
L4 L3

L1

)(
It

M2 M1

)(
R4 R3

R1

)
. (18)

A switching-optimal solution is guaranteed by the following corollary:

Corollary 4. If P is an invertible n×n matrix, there exists a decomposition (18) that satisfies
rankM2 = rankP2.

Proof. We use Theorem 2 on the transpose of P:

PT =

(
It

L2 L1

)(
M4 M3

M1

)(
It

R2 R1

)
.

A computation then shows that

P =

(
MT
4 RT2

RT1

)(
It

MT
3 MT

1

)(
It LT2

LT1

)
,

which has the expected form, with rankMT
3 = rankM3 = rankPT2 = rankP2.

In summary, the RAM-SNW-RAM solution is always optimal in terms of the number
of switches. However, if rankP4 + rankP2 + rankP1 > n, SNW-RAM-SNW offers a
better solution with half the RAM.

Bit-permutations. As bit-permutations are a special case of linear permutations, our
technique yields optimal implementations for them as well. As we have in this case
2 · rankP2 = n− rankP1− rankP4, this means that an implementation (of a non-spatial
streaming bit-permutation) uses either

• 2k · rankP2 switches and 2k banks of RAM, or

• 2k−1 · rankP2 switches and 2k+1 banks of RAM.

Note that in this case, rankP2 is the number of 1s that appear in the submatrix P2.
The decomposition proposed in [63] was already optimal in this particular case, and
yields the case with 2k · rankP2 switches and 2k banks of RAM.

2.2.5 Examples

We now illustrate our method using three important examples of SLPs; the bit-reversal,
the perfect-shuffle, and the half-reversal.

Bit-reversal. We consider the implementation of the bit-reversal permutation
(π(Jn), 2k). Blocking the matrix Jn in the form (9) yields

Jn =

 Jt

Jk−t

Jt

 if t 6 k, and Jn =

 Jk

Jt−k

Jk

 otherwise.
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Since in both cases rankP2 = min(t,k), Corollary 2 states that at least Sπ(Jn),2k/2 =

min(t,k) · 2k−1 switches are needed. However, Theorem 2 shows that an SNW-RAM-
SNW structure requires twice this amount: min(t,k) · 2k switches, based on, for exam-
ple,

Jn =

 It

Ik−t

Jt It


 It Jt

Jk−t

It


 It

Ik−t

Jt It

 ,

for the case t 6 k, and

Jn =

 Ik

It−k

Jk Ik


 Ik Jk

Jt−k

Ik


 Ik

It−k

Jk Ik


otherwise. If, on the other hand, we choose a RAM-SNW-RAM structure, we can reach
the minimal number of switches with, for example, for t 6 k,

Jn =

 It Jt

Ik−t

It


 It

Jk−t

Jt It


 It Jt

Ik−t

It

 ,

and otherwise

Jn =

 Ik Jk

It−k

Ik


 Ik

Jt−k

Jk Ik


 Ik Jk

It−k

Ik

 .

Note in all cases the simplicity of the control logic: only a t-bit counter and t invert-
ers are needed.

However, routing optimality comes at the price of memory optimality. A computa-
tion shows that the bit-reversal satisfies

δπ(Jn),2k = 2
t − at−k,

where

ai =


1 if i 6 0,

2 if i = 1 and

1+ 2ai−2 otherwise.

The SNW/RAM/SNW architecture has a latency of δπ(Jn),2k cycles, and uses 2k RAM
banks that have a size of δπ(Jn),2k words each. The RAM/SNW/RAM architecture
uses twice the number of RAM banks (with the same capacity), and has a latency
doubled.

Perfect-shuffle. We consider the streaming perfect-shuffle (π(Cn), 2k). When
blocked as in (9), it satisfies

P2 = E
1,t
k,t,
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where Ei,jk,t is the k× t matrix containing a 1 at the ith row and the jth column, and 0s
elsewhere. According to Corollary 2, it requires Sπ(Jn),2k/2 = 2k−1 2×2-switches for
its implementation. Additionally, the minimal latency for this SLP is δπ(Jn),2k = 2t−1

cycles. The method described in Theorem 2 yields the decomposition

Cn =

(
It

Ek,t
k,t Ik

)(
Ct Et,1t,k

Ck

)(
It

E1,1
k,t Ik

)
.

The corresponding implementation is memory optimal, but uses 2k switches. Con-
versely, the RAM/SNW/RAM implementation yielded by the decomposition

Cn =

(
Ct Et,kt,k

Ik

)(
It

Ek,1
k,t Ck

)(
It E1,1

t,k

Ik

)

is routing optimal, but has a latency of 2t cycles, and uses a total memory capacity of
2n words.

Half-reversal. We consider the implementation of a streaming half-reversal permu-
tation (I2n−1 ⊕ J2n−1 , 2k) = (π(Vn), 2k). In this case, a block-LU decomposition (15) is
possible, as P1 is invertible:

Vn = (Vt ⊕ Ik) ·
(
It

Fk,t Ik

)
,

where Fk,t is the the k× t matrix containing 1s in the first column, and 0s elsewhere.
This yields a RAM/SNW implementation that is both memory and routing optimal.

2.3 results

We evaluate our method in two ways. First, we consider one particular, but impor-
tant example: the streamed bit reversal. We compare our two proposed architectures
(one of which is optimal) against a prior solution. Second, we compare our streamed
permutations against prior solutions that we found in the literature. We show a table
summarizing the similarities and differences and illustrate these with three example
settings.

Fig. 8 shows throughput versus area for a bit reversal on 211 16-bit elements for the
two different architectures implemented with k ∈ {1, . . . , 5}, i.e., 2 to 32 ports, and t =
11− k. In this case, our SNW-RAM-SNW solution is equal to the one proposed by [63].
For each of the two solutions we also implemented the FPGA-specific optimization
that uses 4-input multiplexers as sketched in Fig. 6, which yields significant area gains.

We compare against the RAM-SNW-RAM solution in [45], which is more general
in that it can handle (fixed) arbitrary, also non-linear permutations. The target is a
Virtex-7 xc7vx1140tflgl1930 FPGA, using Xilinx Vivado 2014.4.

Comparison against prior work. Table 2 summarizes the similarities and differences
between our solutions (SNW-RAM-SNW and RAM-SNW-RAM) and prior works. As
the table shows, only ours provide guaranteed optimal switching complexity at similar
RAM cost for linear permutations.

To show the difference with an example, Fig. 9 compares, for different streaming
scenarios, the number of switches used by the different architectures. In (a) all spec-
ified SLPs are considered, in (b) and (c), the full number is too large and we chose
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Table 2: Comparison of different architectures using RAMs, in the case of a full-throughput
SLP. Values in bold are optimal ones.
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107 random samples instead. The pie charts show the distribution of the number of
switches needed for these SLPs. As shown in this chapter, one of our solutions (the
two leftmost in the table) always minimizes the number of switches needed. We ob-
serve the improvement over prior work and also that for larger scenarios, most of the
permutations can be implemented optimally using SNW-RAM-SNW. As we have seen,
this is not true for the bit-reversal.

2.4 related work

Switching networks for sets of permutations. Switching networks that can execute
all permutations (in a non-streamed way) are a classic topic in computer science [6, 84].
A variant of this problem occurred in Section 2.2.3 where we implemented streamed
spatial permutations. Namely, we had to build a minimal switching network capable
of passing a subset of permutations.12 Our solution was based on a reduced Omega
network and we proved optimality. The complete Omega network has been heavily
studied in [61, 40, 78, 49]. Beyond that, the problem of finding a minimal switching
network to perform a given set of permutations appears to have not received much
attention in the literature. An exception is the last section in [78], which, however,
produces only upper bounds for few cases.

SNW-RAM-SNW structure. We now restrict ourselves to the structure proposed in
Section 2.2.4. This architecture has already been proposed for streamed linear permu-
tations in [63], which also proves optimality for bit-permutations. For these permuta-
tions, our solution is equal (Fig. 8 shows one example).

However, [63] has two shortcomings that we resolve here. First, the method to derive
an SNW-RAM-SNW implementation is in general not optimal (see Fig. 9). Second,
[63] does not consider the alternative architecture RAM-SNW-RAM, which, in some
cases provides solutions with fewer switches at the cost of twice the RAM. In this
chapter we resolve both problems completely by establishing an architecture-oblivious
sharp lower bound for the number of switches needed and a technique for obtaining
that optimal solution using the SNW-RAM-SNW or RAM-SNW-RAM architecture. We
precisely characterize the cases where the latter wins.

As a minor point, the solution in [63] uses a double-buffering method to achieve
full-throughput (as they mention a memory requirement of 2n+1 words in the last
section). We propose an alternative method in Proposition 5 that does not require
additional RAM capacity.

This SNW-RAM-SNW architecture has also been used in [12] to implement the
streaming permutations needed in a bitonic sorting network (which are all linear).
They achieve an efficient memory usage, but the method used (folding a Clos per-
mutation network) doesn’t harness the specificity of the particular permutations they
consider, and the resulting design requires two complete switching networks (that
allow any permutation), which also makes the control logic much more complex.

Similarly, [10] offers a solution based on a Beneš network to build a streamed solu-
tion for any, also non-linear, given permutation. However, the method proposed only
works on sizes that are a power of two (N = 2n), and for power-of-2 streaming width
(K = 2k). Because it is more general, it is not optimal for the linear case. Additionally,
the generated datapath is independent of the desired permutation. The control logic is

12 Specifically a coset Hg, where g is a linear permutation, and H a subgroup of bit complement permuta-
tions, i.e., permutations that map an index i to ib + v, where v is a given bit vector.
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also more complex, as it uses ROM look-up tables to store memory addresses and the
control bit of every switches for every cycles. This allows flexibility in the sense that
different permutations can be implemented simply by modifying these tables, but is
clearly suboptimal for a single fixed permutation. In Fig. 9, we showed how our so-
lutions outperform this method. The same structure was used for the specific case of
the bit-reversal in [11].

RAM-SNW-RAM structure. The RAM-SNW-RAM structure was considered in [45]
to implement any (including non-linear) streaming permutation of any size. A short-
coming is that the central SNW has to be able to pass any spatial permutation. Further,
it considers only double-buffering for its temporal permutations. We compared our
different architectures in Fig. 8 and 9.

Other architectures for streamed permutations. Other approaches for building a
fixed permutation technique include [59], which proposes a register based implemen-
tation, and [31], which is specific to implementing stride permutations. These two
methods have in common that they use registers to delay elements. In this chapter we
choose a more regular architecture using RAM banks instead, which are available on
FPGAs, to spare logic. A mix of FIFOs and RAMs is used in [23] to implement the
bit-reversal. It achieves a routing optimality in any case, and is optimal in latency and
in memory capacity if t < k. The implementation requires the memory to be split in
more banks than 2k, but is a good alternative on architectures where large RAMs are
not advantageous (ASICs).

2.5 conclusion

We introduced a novel measurement on streaming permutation, the routing entropy,
that allows to quantify its routing complexity. We proved that it constitutes a lower
bound on the number of 2-input multiplexers that any of its implementation requires.
In the case of linear permutations, we provided a constructive method (the RAM/S-
NW/RAM architecture) that achieves this lower bound, thus establishing their exact
switching complexity. A remaining question is whether this bound is sharp for any
streaming permutation.

We provided a second method, the SNW/RAM/SNW architecture, that guaranties
memory optimality, and that yields a number of multiplexers that is optimal for this
architecture. In some cases however (that we precisely characterize), this number is
higher than the global optimum.

The underlying key idea of these two methods was to phrase the problem as a
specific matrix factorization and apply techniques from linear algebra to construct so-
lutions and prove their optimality. A topic for future work is to search for architectures
that would be able to achieve memory and routing optimality at the same time, or to
characterize the trade-off that might appear.
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M E M O RY- E F F I C I E N T FA S T F O U R I E R T R A N S F O R M O N
S T R E A M I N G D ATA B Y F U S I N G P E R M U TAT I O N S

In this chapter, published in [73], we extend the prior work corresponding to the
designs shown in Fig. 2 with a novel method that can reduce memory requirement by
roughly one half. The method is more generally applicable beyond FFTs: it designs a
circuit that can perform a small number of data permutations, which take the input
streamed over several cycles.

The architecture we propose is shown in Fig. 10b and fuses the hardware performing
the two permutations in Fig. 10a to reduce cost, and in particular the memory required.
As a result, a memory-efficient Pease FFT can be implemented for any radix. Here, we
focus on radix 2.The method for fusing the streaming permutation is more generally
applicable but the FFT was the motivation for this work.

Contributions. Our main contributions are as follows:

• We present a method to design a specialized datapath that can realize a given
(small) set of permutations, taking the input streamed over several cycles.
This datapath is cheaper than one capable of performing all permutations.
The method is limited to the class of linear permutations, which contains bit
reversal, perfect shuffle, matrix transpositions, and permutations needed in
other FFTs beyond Pease, sorting networks, Viterbi decoders, filter banks, and
other algorithms. The datapath we design consists of basic logic and RAMs,
which is well-suited for implementation on FPGAs.

• As a major application, we propose a novel variant of a streamed FFT architec-
ture (as shown in Fig. 10b) that reduces the RAMs required by prior work by up
to one half.

3.1 streaming multiple linear permutations

The prior techniques from Chapter 2 are sufficient to implement the streaming permu-
tations, and thus the streaming FFTs shown in Fig. 2. However, they cannot be used for
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(a) Iterative and streaming reuse. [47]
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F2

F2

×

×

(b) Iterative and streaming reuse with fused
permutations.

Figure 10: Our contribution: streaming design with iterative reuse with two permutations
fused.

37



38 memory-efficient streaming fft by fusing permutations

the structure in Fig. 10b, where the same datapath has to handle two different SLPs1.
An immediate solution would be to use general streaming permutation methods, like
[45] or [38]. They propose, respectively, a structure as in Fig. 7a and 7b, but replace
the specialized SNWs by complete, and thus more expensive permutation networks.
In this section, we propose a method to implement in hardware a datapath capable of
rearranging streaming data according to a small number of given linear permutations,
thus reducing the implementation cost compared to a general solution.

Problem statement. Formally, we are given a list

π(P(0)),π(P(1)), . . . ,π(P(s−1))

of linear permutations, and a streaming width 2k. Our goal is to implement an ar-
chitecture that performs the permutation π(P(i)) on the ith dataset, streamed over 2k

ports.
The main idea first decomposes each permutation as in Theorem 2, i.e., for all 0 6

i < s,

π(P(i)) = π(L(i)) · π(C(i)) · π(R(i)),

where each factor is either temporal or spatial. The global architecture can then be
implemented by a sequence of blocks that each perform either a sequence of temporal
or a sequence of spatial SLPs. We now consider these two cases and describe their
implementation.

3.1.1 Sequence of Spatial SLPs

We assume a given list of bit matrices P(0),P(1), . . . ,P(s−1), such that all π(P(i)) are
spatial, i.e.,

P(i) =

(
It

P
(i)
2 P

(i)
1

)
, 0 6 i < s. (19)

We first design solutions for two special cases from which we then build the solution
for the general case.

Multiplexer array. We first consider the case where all the SLPs π(P(0)), . . . ,π(P(s−1))
are steady spatial permutations, i.e., for every i,

P(i) = It ⊕ P(i)1 =

(
It

P
(i)
1

)
. (20)

Since each such SLP is a different wiring, the list of those can be implemented with
an array of 2k d-input multiplexers, where d is the number of unique matrices in the
list (see Fig. 11b).

For instance, if the list contains two different matrices It⊕A and It⊕B, it is possible
to implement both using a structure where each output port p is the output of a
multiplexer connected to the inputs A−1pb and B−1pb, and controlled by a counter.
Of course, the multiplexers connected twice to the same input can be simplified to a
simple wire, leaving an actual implementation consisting of∣∣{p | A−1pb 6= B−1pb}

∣∣ = 2k − 2k−rank(A−1+B−1)

1 The direct sum, i.e. block diagonal composition of two linear permutations is in general not a linear
permutation.
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2-input multiplexers. If A = B, then A−1 = B−1 and thus the sum is 0 (since addition
is modulo 2), which means the implementation consists only of wires, as expected.

Switching array. We now consider another special case where, for every i, P(i)1 = Ik

and all elements of P(i)2 are zero, except for its last row, which we denote with vTi .
Formally, for every i,

P(i) =


It

1
. . .

vTi 1

 . (21)

In this case, (10) shows that π(P(i)) is the permutation that exchanges each pair within
a chunk of 2k elements, every time the corresponding cycle c is such that cb · vib = 1.

Therefore, P can be implemented using an array of 2k−1 2×2-switches. All these
switches are controlled by the output of a single s-input multiplexer that chooses
among the results of the scalar products cb · vib, for 0 6 i < s. These scalar products
are computed using XOR gates on a timer cb.

Fig. 11c shows such a switching array that can implement any spatial P(i) in (21) for
k = 2.

General Spatial SLP. We return now to the general case (19), which we will de-
compose into matrices of the form (20) and (21) to implement it with the previous
structures. We first consider the matrix M of size k× st that concatenates the matrices
P
(i)
2 :

M =
(
P
(0)
2 P

(1)
2 · · · P(s−1)2

)
.

Using Gaussian elimination, it is possible to find an invertible matrix K of size k× k
such that KM has m = rankM non-zero rows at the top. This implies that for every i
the matrix KP(i)2 has the form

KP
(i)
2 =



vT1,i

vT2,i
...

vTm,i

0
...

0


,
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where the m top rows are denoted with vTj,i. Note that some of these may be zero for a
given i. Direct computation yields now the decomposition into the prior special cases:

P(i) =

(
It

K−1Sk−mk

)
·


It

1
. . .

vT1,i 1


(
It

Sk

)
·

...
It

1
. . .

vTm,i 1


(
It

Sk

)
·

(
It

KP
(i)
1

)
.

The corresponding architecture can now be read off from right to left:

1. a multiplexer array that permutes the wires as π(It ⊕KP(i)1 ) for the ith dataset,

2. a sequence of m switching arrays, parameterized, respectively, by vm, vm−1, . . . ,
v1, each preceded by a perfect shuffle of the wires, and

3. a rewiring performing the permutation π(It ⊕K−1Sk−mk ).

Cost. The structure that we derived consists of rankM arrays of 2k−1 switches each,
and one array of at most 2k multiplexers.

3.1.2 Sequence of Temporal SLPs

We assume a given list of bit matrices P(0),P(1), . . . ,P(s−1), such that for 0 6 i <

s,π(P(i)) is temporal, i.e.,

P(i) =

(
P
(i)
4 P

(i)
3

P
(i)
1

)
=

(
It

P
(i)
1

)
·
(
P
(i)
4 P

(i)
3

Ik

)
.

This decomposition yields a sequence of steady spatial SLPs that can be implemented
using an array of switches a explained earlier, and a RAM array:

RAM array. A structure that permutes a dataset i according to π(P(i)), where

P(i) =

(
P
(i)
4 P

(i)
3

It

)

can be implemented using an array of 2k dual-ported RAM banks of 2t words. Each
of these banks have a write port connected to one of the inputs of the block, and a
read port connected to the corresponding output (see Fig. 11a). The write and read
addresses ensure that data are correctly permuted (accordingly to (11)), and are re-
spectively controlled using two t-bits timers: c, that starts when a new dataset arrives,
and c ′, that starts when the output begins.
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(a) RAM banks array (b) Multiplexer array (c) Switching array

Figure 11: The basic blocks we use, here for a streaming width of 2k = 4. (a) can pass any
temporal permutation; (b) implements the two spatial steady SLPs π(It ⊕ J2) and
π(In); (c) implements (21).

Latency. The output begins as early as possible, to minimize the latency, for each dif-
ferent permutation. Therefore, c ′ is triggered when c reaches the value corresponding
to the maximal lifetime δi of an element in the permutation:

δi = max
p,c

(c− d(i,p, c)), with d(i,p, c)b = P
(i)
4 cb + P

(i)
3 pb.

Conflict-free addressing. Besides permuting correctly the data, the read and write
addresses need to ensure a conflict-free access. This means that an incoming element
must not be written to a place where an element of a previous dataset has not been
read yet. One solution is to use double buffering [45, 63], but this requires doubling
the size of each RAM bank.

The solution we propose is to always write an element of a dataset where the same
element of the previous dataset was read. Namely, for the pth port, the first dataset
received is written consecutively in the bank, i.e., at address cb. It is then read at the
address (P

(0)
4 )−1c ′b + (P

(0)
4 )−1P

(0)
3 pb, to perform the first permutation π(P(0)). Then,

the second dataset is written where the first dataset was read to avoid conflicts, so at
the address (P(0))−14 cb + (P(0))−14 P

(0)
3 pb. It is then read at the address

(P
(0)
4 P

(1)
4 )−1c ′b + (P

(0)
4 P

(1)
4 )−1P

(1)
3 pb + (P

(0)
4 )−1P

(0)
3 pb.

More generally, the ith dataset is written (resp. read) at the address Uicb + ui,p,
(resp. Ui+1c ′b + ui+1,p), where Ui is such thatUi+1 = Ui(P

(imods)
4 )−1,

U0 = It,

and ui satisfiesui+1,p = Ui+1P
(imods)
3 pb + ui,p,

u0,p = 0.

We store the values of (Ui) in a ROM, controlled by a counter. Using AND and
XOR gates, the term Uicb is computed once for all the banks. Then, this signal is
XORed with ui,p for each bank p to obtain the write address. The number of terms of
(Ui) stored in the ROM is the least that guarantees conflict-free access (this length is
bounded by the period2 of (Ui)) The read address is obtained similarly.

2 The period of (Ui) is sq, where q is the smallest positive integer such that (P(s−1)4 P
(s−2)
4 · · ·P(0)4 )−q = It.
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Alternative addressing. It is also possible to use the method proposed in Proposi-
tion 5 here, allowing to use banks of size maxi δi words. However, in our application,
this value is close to 2t due to the bit reversal.

3.1.3 General sequence of SLPs

Now we consider the general case of arbitrary invertible bit matrices P(0),P(1), . . . ,P(s−1).
Using Theorem 2, we get, for each i, the decomposition

P(i) =

(
It

L(i) Ik

)(
C
(i)
4 C

(i)
3

C
(i)
1

)(
It

R(i) Ik

)
.

This decomposition yields two sequences of spatial permutations, and one of temporal
permutations. These can be implemented in a straightforward way using the previous
structures.

Cost. The resulting architecture consists of one multiplexer array (as both sequences
of spatial SLPs do not require any) containing a maximum of 2k − 1 multiplexers, an
array of 2k RAM banks (except in the special case where all the SLPs are spatial), and
(rankML + rankMR) · 2k−1 2×2-switches, where

ML =
(
L
(0)
2 L

(1)
2 · · · L(s−1)2

)
, and MR =

(
R
(0)
2 R

(1)
2 · · · R(s−1)2

)
.

Optimality. The number of RAM banks and the RAM latency match the bounds
given in Chapter 2, and are therefore optimal. The number of switches, in the general
case, depends on the different degrees of freedom appearing in the decompositions3

from Theorem 2, and no optimality can be claimed. Of course, if the sequence of SLPs
only contains one unique SLP, the design we obtain only differs from Chapter 2 by
rewirings, and it therefore inherits the optimality properties.

Example: Fusing perfect shuffle and bit reversal. As an example, we design the
permutation block in Fig. 10b capable of passing a perfect shuffle π(C4), and a bit
reversal π(J4). Using the formulas of Section 2.2.5, we get the following (spatial/tem-
poral/spatial) decompositions for J4 and C4:

J4 =


1

1

1 1

1 1

 ·

1 1

1 1

1

1

 ·

1

1

1 1

1 1

 , and (22)

C4 =


1

1

1

1 1

 ·


1

1 1

1

1

 ·

1

1

1 1

1

 . (23)

3 More precisely, the decomposition in Theorem 2 is optimal for each permutation taken individually,
but as we compute independently these decompositions for each permutation, there is no guarantee in
general that the global sequence yields an optimal rank for ML and MR.
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Figure 12: Datapath for the permutation block in Fig. 10b.

Figure 13: Datapath for a bit reversal on 2n = 16 elements streamed on 2k = 4 ports (see
Section 2.2.4).

we derive a datapath that consists of two blocks that performs a sequence of spatial
SLPs around a block that performs a sequence of temporal SLPs. For example, this
sequence of temporal SLPs contains the two middle permutations in (23) and (22):

π




1

1 1

1

1


 and π



1 1

1 1

1

1


 .

The resulting implementation consists of an array of two 2-input multiplexers, two
stages of two 2×2-switches each, an array of four RAM banks, and two additional
stages of two 2×2-switches each (Fig. 12). Compared to an architecture performing
only the bit reversal derived in Section 2.2.4 (Fig. 13), it requires only two additional
2-input multiplexers.

More generally, an architecture that can stream both the bit reversal and the perfect
shuffle on 2n points with a streaming width 2k differs from a bit-reversal-only data-
path with the same architecture by only 2k − 2 2-input multiplexers. In other words,
the additional support for the perfect shuffle is obtained almost for free.

3.2 application : pease fft

To evaluate our fused permutation in a concrete case, we have built a generator (see
Chapter 5) capable of producing designs as in Fig. 2 and 10b for Pease FFTs of arbitrary
radix (Fig 2a shows the special case of radix 2). This generator takes as input the size
2n of the FFT, the number of ports 2k, the bit-width of the input data, and the desired
radix 2r, with r|n and r 6 k 6 n. It outputs the corresponding design in the form of
Verilog code. In this section, we briefly explain how this generator works.

Derivation of the FFT architecture. The generator first considers a Pease FFT algo-
rithm of the corresponding radix, and the sequence of permutations that have to be
supported by the permutation block of Fig. 10b. These are all linear, and the block is
designed according to the techniques shown in Section 3.1. Butterflies and complex
multipliers are then added to this permutation block within a loop, as in Fig. 10b.
Some optimizations occur at this time. For instance, with a radix 2, during the im-
plementation of the leftmost spatial permutation, it is possible to choose K such that
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F2

F2

×

×

(a) Streaming iterative reuse as in Section 2.2.4

F2

F2

×

×

(b) Streaming iterative reuse with fused permutations

Figure 14: Radix-2 Pease FFT, iterative reuse with fused permutation n = 4,k = 2.

vj,i = 0, for i < n and j < min(t,k). Therefore, the min(t,k) − 1 leftmost arrays
of switches can safely be “unrolled,” thus reducing the latency within the loop, and
therefore improving the global throughput (see Fig. 14b). Only one stage of the left-
most spacial permutation remains in the loop.

Compared to the classic streaming reuse architecture (Fig. 14a), the design we obtain
has an additional multiplexer stage and an additional switching array stage in the loop,
but it does not have a dedicated structure to compute the bit reversal.

RTL graph. The design is then translated into an RTL graph, where additional
optimizations are performed including the following:

• ROMs containing periodic values are simplified.

• ROMs containing a single value are replaced by a constant.

• Trivial arithmetic operations are simplified.

• A multiplexer with inputs coming from two multiplexers sharing the same in-
puts are fused into a single multiplexer.

• A 2-input multiplexer whose inputs come from two other multiplexers driven by
the same control signal is fused to a 4-input multiplexer. This allows the efficient
use of 6-input LUTs on current FPGAs.

• ROMs containing the same values are paired.

Additionally, in this step the design is pipelined and synchronized. In particular,
if a control signal needs to be pipelined, the corresponding counters/timers are trig-
gered in advance if possible. Otherwise, a reset value is computed for the registers
that were added. As the design contains a loop, it must also be ensured that the head
of a dataset does not collide with its tail anywhere. Therefore, the design is first gen-
erated in a sandbox to measure the latency of its different parts. In a second pass,
the latency of the inner temporal permutation is then increased if needed. Conversely,
if the latency of the inner part of a loop is higher than the duration of the dataset,
it means that the amount of time (the gap) between two datasets must be increased.
This information is used in the second pass for the temporal permutation to reduce
as much as possible the number of elements of (Ui) (see Section 3.1) stored in ROM,
while ensuring conflict-free addressing in the RAM.

Once these simplifications have been performed, the design is output as Verilog
code.
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Limitations. A limitation of our generator concerns the twiddle factors. In the de-
signs we produce, each complex multiplier has a corresponding ROM that contains
all the (real and imaginary) coefficients that it uses. A more distributed approach,
along with a simple online computation of these coefficients could reduce further the
number of BRAMs used.

3.3 results

In this section, we compare the cost and the performance of our generated FFT datap-
aths with other, state-of-the-art memory-efficient FFT architectures.

Table 3 lists the benchmarks we compare against. We consider two types of designs.
The first type (A–D) is the prior iterative reuse structure from [47] exemplified in
Fig. 2d, with different solutions for the streaming permutations. The original [47] uses
the permutations from [63], which is A in the table. B and C use different solutions
that are not specific to linear permutations. Both, A and B are available online at [44].
D improves the permutations in [63].

The second type (E–G) is the proposed architecture exemplified in Fig. 10b, again
with different solutions for the necessary fused permutation block. E and F is what
can be built with prior work that provides a general streamed permutation network.
G is our proposed solution specialized to the two permutations that need to be fused.
Note that neither E or F has been used within an FFT architecture as proposed here.

Table 3 analyzes the cost and performance for a radix-2 Pease FFT. We discuss these
next.

Cost. For the memory consumption, we list the RAM requirement for the permu-
tation part, excluding the memory used to store the twiddle factors. C theoretically
should allow the use of banks of 2t−1 words for the perfect shuffle, but when used
with the structure in Fig. 2d, the latency of the inner loop had to be increased to avoid
dataset collisions, thus requiring 2t words for all RAM banks. The gains compared to
A–E are a factor of two or four; the only competitive method is F. However, the routing
cost is at least a factor of two higher, and even more for t smaller than k.

For the routing requirements, we assume that the methods B, C, E, F using complete
permutation networks implement them with [84], i.e., using (k−1/2) ·2k 2×2-switches.
We counted 2multiplexers per switch, and 2k multiplexers for the loop. Figure 15 plots
the formulas in Table 3 for three different numbers of ports and a range of FFT sizes.
Our method is better compared to A–D and F. Only E use less multiplexers4 for large
values of t, but requires four times more RAM banks.

In summary, we improve routing cost compared to F (and B and C) and RAM cost
compared to A–E, both by at least a factor of two.

Gap. Next we analyze the minimal number of cycles between two datasets, i.e.,
the gap, which is the inverse of the throughput. In our case, it is constrained by the
duration of the input itself (2t cycles), and by the time the dataset stays in the loop. In
Table 3, we assumed that the designs were all targeting ≈ 400Mhz on a Virtex 7. This
requires a 4 cycles pipelining for the arithmetic part (butterfly and multiplications),
and one register every 2 multiplexers (a complete permutation network has therefore
a latency of dk/2e+1 cycles). Additionally, we assumed that all temporal permutations
(even when fused) were done using the minimal possible latency; a feature that can

4 Using the RAM/SNW/RAM architecture instead would have yield better routing complexity, but for
twice the amount of RAM.
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easily be obtained using dual-ported RAM. However, with [45] (B and E), the total
“temporal latency” depends on the chosen decomposition, and we can therefore only
provide a lower bound. The corresponding formulas in Table 3 are plotted in Fig 16. It
appears that, for n− k = t > 5, the latency required to avoid two datasets overlapping
in the loop dominates the intrinsic inner latency of the loop. Thus, the term 2t becomes
the dominant term in the max, and the gap becomes n · 2t for all streaming iterative
reuse architectures (A–D), and (n+ 1) · 2t for the fused permutation structure (E–G).
Thus, as n, and hence t, increases the gaps of the different solutions converge. The
same is then also true for the throughputs.

Results after place and route. Among the prior FFT solutions only A ([47]) is avail-
able online at [44]. We compare these designs with our solution G after place-and-
route. For completeness we also implemented a variant of our generator [66] that
produces the FFTs in D, which reduces the RAM cost of A.

The area and the RAM consumption of different designs for a radix-2 FFT are shown
in Fig. 17, after place and route on a Xilinx Virtex 7 xc7vx1140 using Vivado 2014.4,
using an element size of 16 bits. We observe that, as the number of RAM bank does
not depend on n in the considered designs, the memory consumption stays constant
until the capacity of the BRAM is reached. As expected from Table 3 our design re-
quires fewer BRAMs; since the twiddle factors are stored in BRAMs as well, the RAM
usage is not exactly halved. The logic area is roughly comparable and includes the
control, which was not included in Table 3. While our control logic is arguably more
efficient than storing all the switch configuration and addresses for all cycles, it is
more complex than the one used in A or D, which explains why we do not require
fewer slices.

Fig. 18 shows some results for a radix-4 FFT, which slightly reduces the number
of multiplications needed but can only be folded at the granularity of DFT4 blocks,
which themselves are implemented using four butterflies. The overall behavior and
comparison is analogous to the radix-2 case.

Discussion. Because our main target is FPGA, which contains BRAM modules, we
compared our work with other RAM-based permutation techniques. However, other
approaches based on registers [59] or distributed buffers [31] could be beneficial
on platforms where grouping several memory elements does not improve the cost
(ASICs).

Hardware architectures to compute DFTs are a classic topic in the literature, and
other approaches that also use a RAM capacity equal to the size of the dataset (2n)
exist. However, these works are based on in-place algorithms [32], or consist of pa-
rameterized architectures [25] that do not provide the same flexibility as a generated
streamed architecture (for instance, the number of ports is constrained by the radix
used in the algorithm).

3.4 conclusion

We proposed a novel method to design a datapath capable of realizing a number of
fixed streamed linear permutations. As an application, we proposed a new variant of a
folded Pease FFT that requires only one permutation block for both, the internal shuf-
fles and the final bit reversal. While in some FFT applications, the bit reversal can be
omitted, in many others it cannot, e.g., if frequency components need to be processed
in order from low to high. For those, our new architecture offers novel Pareto-optimal
tradeoffs between performance and logic/memory cost across an entire design space



50 memory-efficient streaming fft by fusing permutations

2

20

200

3 4 5 6 7 8 9 10 11 12 13 14

n

D

Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Memory [BRAMs]

0

500

1000

1500

2000

2500

3 4 5 6 7 8 9 10 11 12 13 14

n

D Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Area [slices]

2

20

200

4 5 6 7 8 9 10 11 12 13 14 15

n

D

Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 8 ports
Memory [BRAMs]

0

500

1000

1500

2000

2500

4 5 6 7 8 9 10 11 12 13 14 15

n

D

Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 8 ports
Area [slices]

2

20

200

5 6 7 8 9 10 11 12 13 14

n

D

Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 16 ports
Memory [BRAMs]

0

500

1000

1500

2000

2500

5 6 7 8 9 10 11 12 13 14

n

D

Proposed

A

Radix-2 Pease FFT, size 2n, 2k = 16 ports
Area [slices]

Figure 17: Resources used by a radix-2 Pease FFT. Lower is better.
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Figure 18: Resources used by a radix-4 Pease FFT. Lower is better.

of FFTs given by the chosen radix and number of input ports. These should directly
translate to increased energy efficiency for a wide range of resource-constrained em-
bedded applications.





4
I N S E A R C H O F T H E O P T I M A L WA L S H - H A D A M A R D
T R A N S F O R M F O R S T R E A M E D PA R A L L E L P R O C E S S I N G

The Walsh-Hadamard transform (WHT) is an important function in signal processing [29,
5] and coding theory [41, 86]. Similar to the FFT, it is computed using a network of
n · 2n−1 butterflies but without the twiddle factors in between (see Fig 19a for n = 4).
The network can be modified in exponentially many ways by properly changing the
permutations between stages (e.g., [35]). For example, Fig 19b shows a Pease-like WHT
[60] that consists of equal stages suitable for iterative implementation in hardware.

Knowing the exact space of valid WHT networks makes it possible to search for the
optimal one for a given implementation task. In this chapter, published in [75], we
consider streaming implementations of the WHT (see Fig. 20), and ask the following
question: For given n and k, which is the optimal WHT network for a streaming
implementation, in terms of number of RAMs and switches required for implementing
the corresponding streaming permutations. Towards answering this question we offer
the following contributions:

• We exactly characterize the (exponentially large) set of all valid WHT networks
such that the occurring permutations are linear.

• We present an algorithm to smartly search the large space of WHT networks at
least for small sizes n.

• Using the search we find, for given n and k, novel and non-obvious WHT net-
works that have proven optimal hardware cost. An example is shown in Fig. 19c.

• Our results show the trend in hardware cost and give evidence that there are for
all sizes n yet undiscovered WHT networks that are optimal for streaming.

Related work. The work in [35, 34] is similar in concept for WHT software im-
plementations. It explores a large set of WHT algorithms to obtain efficient software
library implementations, or as a test case for a model predicting the performances
of libraries. However, the goal is to find the recursion best matched to the memory
hierarchy; streaming in hardware poses a very different structural requirement.

4.1 background and notations

We provide background on Walsh-Hadamard transform (WHT) algorithms and their
implementation in streaming hardware. Particularly important are the permutations
between butterfly stages for which there is a large degree of freedom that we use as a
search space to find the optimum.

WHT algorithms. The WHT is a linear transform that computes y = H2n · x where
x,y ∈ C2

n
. It is defined by the Hadamard matrix:

H2 = DFT2 =
(
1 1
1 −1

)
, and H2n = H2 ⊗H2n−1 , for n > 1. (24)

A direct computation shows that the Hadamard matrix can be rewritten as

H2n =
(
(−1)i

T
bjb
)
06i,j<2n

, (25)

53
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(a) Radix-2r = 2 Iterative WHT (26)
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(b) Radix-2r = 2 Pease WHT (27)
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(c) Algorithm that, once streamed with 2k = 4, yields an
implementation that minimizes both the number of
RAM stages, and the number of switch stages.

Figure 19: Dataflows computing a WHT on 2n = 16 elements. The H2 blocks represent butter-
flies.
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Figure 20: Algorithms from Fig. 19 folded with a streaming width 2k = 4. This architecture
uses a fourth of the number of butterflies, but processes the inputs over 2n−k = 4

cycles.

using our previous notation that, for an integer 0 6 i < 2n, denotes with ib the n-bit
column vector containing the binary representation of i with the most significant bit
at the top.

For instance, the WHT on 8 elements corresponds to the matrix

H23 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


.

The definition, recursively applied, directly yields the algorithm, i.e., butterfly net-
work, shown in Fig. 19a. It consists of n stages of 2n−1 butterflies I2n−1 ⊗H2 . It is, in
essence, a Cooley-Tukey FFT [15] without twiddle factors, requiring only n · 2n oper-
ations. As for the FFT, the occuring permutations are all BPs; thus, the algorithm can
be formally written using the Kronecker formalism [33, 82] as

H2n = π(P0) ·
n∏
`=1

((I2n−1 ⊗H2) · π(P`)) , (26)

where P0, . . . ,Pn are n× n permutation matrices. A given butterfly network, i.e., al-
gorithm, can be manipulated in a myriad of ways to obtain variants, for example, by
permuting the butterflies within stages. A popular example is the constant-geometry
Pease-like [60] algorithm that has the same perfect shuffle π(Cn) after every stage (see
Fig. 19b). It is formally written as

H2n = π(In) ·
n∏
`=1

((I2n−1 ⊗H2) · π(Cn)) . (27)

We will later determine the exact set of possible linear permutations between stages
to exhaustively search for the optimal WHT algorithm when used for the streaming
implementations explained next.

Streaming WHT. A given WHT algorithm can be directly mapped to hardware but
incurs O(n · 2n) area cost. As with the FFT (Fig 2a), it is possible to reduce this cost to
O(n2k) while maintaining high throughput by folding the network as shown in Fig. 20

[50]. For the implementation of the resulting SLPs, we use the SNW/RAM/SNW archi-
tecture (Section 2.2.4), as we consider RAMs more costly than the required switches.
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4.2 enumeration of wht algorithms

Besides the iterative and Pease WHT (respectively in Fig. 19a and Fig 19b), many other
variants can be derived, corresponding to different butterfly networks. For example,
the butterflies in one stage can be permuted with a permutation σ. Formally, this
means replacing

I2n−1 ⊗H2 = (σ⊗ I2) · (I2n−1 ⊗H2) · (σ−1 ⊗ I2). (28)

We are only interested in the cases where σ⊗ I2 is linear, which is true if and only
if σ is linear, i.e., σ = π(P), where P is an invertible (n− 1)× (n− 1) bit matrix (P ∈
GLn−1(F2)). Using π(P)⊗ I2 = π(P⊕ I1), (28) becomes

I2n−1 ⊗H2 = π(P⊕ I1) · (I2n−1 ⊗H2) · π(P−1 ⊕ I1). (29)

Using these degrees of freedom, (27) was derived from (26) and one could wonder
whether there are more valid transformation of the WHT algorithms.

The following theorem, proven in Chapter 7, is a main contribution of this thesis.
It enables the enumeration of all linear permutations between stages that produce a
valid WHT:

Theorem 3. The Hadamard matrix H2n satisfies

H2n = π(P0) ·
n∏
`=1

((I2n−1 ⊗H2) · π(P`)) (30)

if and only if there exist B ∈ GLn(F2) and (Q1, · · · ,Qn) ∈ (GLn−1(F2))
n such that

P0 = B ·
(
Q1

1

)
,Pn =

(
Q−1
n

1

)
·BT , and

P` =

(
Q−1
`

1

)
·
(
Q`+1

1

)
, for 0 < ` < n.

(31)

In particular, there are a total of gnn−1gn butterfly networks, where gn = |GLn(F2)| =∏n−1
i=0 (2

n − 2i).

As an example, (27) corresponds to Qi = In−1 for 1 6 i 6 n, and B = In. All
networks for n = 2 are shown in Fig. 21 with associated bit matrices in Table 4.

Note that the theorem shows that in addition to (29), there is another, non-obvious
degree of freedom: for any LP π(B), the WHT satisfies

H2n = π(B) ·H2n · π(BT ). (32)

This degree of freedom will later produce novel optimal WHT algorithms for stream-
ing implementations. Note that, in general, π(BT ) 6= π(B)T .

4.3 search for optimal algorithms

The number of WHT algorithms gnn−1gn grows exponentially (see Table 5), which
makes enumeration infeasible, except for very small sizes. Here we propose a search
algorithms that pushes feasibility into the region of n = 5–8 to find evidence for the
existence of better, yet unknown algorithms for streaming.
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Figure 21: Dataflow of all butterfly networks with linear permutations computing H22 . The
associated bit matrices are listed in Table 4

Ref. P0 P1 P2 P0:n X

(a)

(
1

1

) (
1

1

) (
1

1

) (
1

1

) (
1

1

)

(b)

(
1

1

) (
1

1

) (
1

1

) (
1

1

) (
1

1

)

(c)

(
1

1 1

) (
1

1

) (
1

1 1

) (
1 1

1

) (
1

1 1

)

(d)

(
1 1

1

) (
1

1

) (
1 1

1

) (
1

1 1

) (
1 1

1

)

(e)

(
1 1

1

) (
1

1

) (
1

1 1

) (
1

1 1

) (
1 1

1

)

(f)

(
1

1 1

) (
1

1

) (
1 1

1

) (
1 1

1

) (
1

1 1

)

Table 4: Matrices P0, P1 and P2 of all butterfly networks with linear permutations computing
H22 . The corresponding product of matrices (P0:n) and spreading matrix (X) defined
in Chapter 7 are presented as well. The first line corresponds to the Pease algorithm,
the second one to its transpose. These two algorithms are the only ones that can be
obtained using (24) recursively [35].

n 1 2 3 4 5 6 7 8

Derived from (24) 1 2 6 24 112 568 3032 16768

BP 1 2 48 31104 ≈ 109 ≈ 2 · 1015 ≈ 5 · 1023 ≈ 2 · 1034

Linear 1 6 18144 ≈ 4 · 1012 ≈ 4 · 1027 ≈ 1051 ≈ 7 · 1084 ≈ 4 · 10130

Table 5: Number of butterfly networks with linear permutations, number of butterfly networks
with bit permutations and number of such networks that can be derived from (24) [35]
for a given n.
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4.3.1 Cost function

We search for WHT algorithms that minimize a given implementation cost. In this
chapter, we minimize first the number of independent memory banks and then the
number of multiplexers used to implement the corresponding streaming permutations
with a streaming width of 2k. Therefore, we use the SNW/RAM/SNW architecture
(Section 2.2.4) that guaranties a minimal number of banks for a given SLP. Therefore,
our cost function favors spatial permutations (i.e. matrices of the form (12)), and then
minimize (17). First, we block each Pi as

Pi =

(
Pi,a Pi,b

Pi,c Pi,d

)
, with Pi,d of size k× k.

The cost function we minimize is

Cost =
n∑
i=0

Cost (Pi) , (33)

where

Cost (Pi) = n2∆Pi + max(rankPi,c,n− rankPi,a − rankPi,d).

Here, ∆Pi denotes whether the SLP (π(Pi), 2k) is spatial; its value is 0 in this case (if
Pa = In−k and Pb = 0; no RAM stage is needed), and 1 otherwise (thus 2k RAM
banks are needed). The factor n2 ensures that a RAM stage is more penalised than
any possible number of switches. Further, it allows to retrieve the number of RAM
stages needed via an euclidean division.

Any other extensive cost (i.e., that has a cost in the form (33), with Cost (Pi) > 0) can
be used with the method we propose next. For instance, latency and total memory
could as well be minimized.

4.3.2 Search algorithm

We assume a function G` that can enumerate all invertible `× ` bit matrices; G`(i)
is the ith such matrix. Our approach consists of two main steps. We first compute a
matrix Cint = (cint

i,j)06i,j<gn−1 , containing the minimal cost of the internal permutations
Cost (P1) + · · · + Cost (Pn−1) for each possible pair of matrices Q1 = Gn−1(i) and
Qn = Gn−1(j). Then, we compute similarly a matrix Cext containing the minimal
cost of the external permutations Cost (P0) + Cost (Pn). The optimal cost is then the
smallest element of Cint +Cext.

Internal cost matrix Cint. We first store in a matrix C = (ci,j)06i,j<gn−1 the cost
that a single internal permutation π(P`) would have, given Q` = Gn−1(i) and Q`+1 =
Gn−1(j):

ci,j = Cost

((
G−1
n−1(i)

1

)
·
(
Gn−1(j)

1

))
.

The minimal cost that two consecutive internal permutations π(P`) and π(P`+1)

would have, given Q` = Gn−1(i) and Q`+2 = Gn−1(j) is

min
Q`+1

Cost (P`) + Cost (P`+1) = min
k
ci,k + ck,j.
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This computation corresponds to the distance product [20] of C with itself. Getting
Cint consists of performing this task n − 1 times: Cint = Cn−1. We use a fast expo-
nentiation algorithm, leading to an arithmetic complexity in O(g3n−1 log(n)), and a
memory footprint in O(g2n−1) for this step.

External cost matrix Cext. The matrix Cext of the cost of the external permutations
can be obtained by trying all the possible matrices for B, for each pair Q1, Qn. This
step has an arithmetic complexity in O(gng2n−1).

This search can be simplified for a given cost. For instance, for the cost shown in the
result section, a close formulation for an optimal B was possible, making the second
step negligible compared to the first. Further, our algorithm can be restricted to a
subset of all linear permutations as shown in the results.

4.4 results

We implemented the search algorithm using as building block a specially designed
linear algebra library for the efficient computation with 8 × 8 bit-matrices. Our
cost function first minimizes the number of stages of RAM banks (i.e., favoring
spatial SLPs), and then the number of switching stages (i.e., favoring small values
for max(rankP2,n − rankP1 − rankP4)). However, the arithmetic complexity of the
algorithm prevented us from completing the search for n > 6 (which would have
taken years). Therefore, we have also run the search restricted to permutations
that are BPs (thus reducing the complexity to O((n − 1)!3 log(n))). This choice is
also theoretically important as all-known WHT networks (just as power-of-two FFT
networks) are built using BPs. We will see that BPs alone will not yield the optimum.

Number of RAM stages. The Pease algorithm, when streamed, requires n stages of
RAM banks, the iterative WHT only n− k+ 1. The minimal number of RAM stages
found by our search for both LPs and also when restricted to BPs is dn/ke and thus
better. Note that if k divides n this cost can be achieved using an iterative radix-2k

algorithm. For k not dividing n our search finds novel solutions.
Number of switching stages. The minimal number of switching stages over all

RAM-optimal algorithms found by our search is shown in Table 6. Note that in some
cases, the best algorithm that uses BPs has more switches than the iterative algorithm.
In these cases, the latter is not RAM-optimal.

Most interestingly, for streaming widths 2k > 2 our search with LPs discovers novel
WHT networks that improve prior ones in both RAM usage and required switches.
Considering BPs alone (as in all known network variants including the large space in
[35]) is not sufficient. Further, all optimal networks found have a non-trivial B in (32).

Unfortunately, we did not manage to extrapolate from the WHT networks found to
optimal solutions for all sizes n and k. To illustrate the difficulty of such an extrapo-
lation, consider the optimal network found for n = 4 and k = 2 in Fig. 19c, and for
n = 5 and k = 3 in Fig. 22. In addition, the linear permutations in these algorithms
have a minimum number of bits set in their bit-matrices.

4.5 conclusion and future work

We introduced an idea that is of both theoretical and practical interest: namely, for an
algorithm with regular structure and a given implementation task, one can enumerate
all possible variants to find the optimal solution. The challenge is in characterizing



60 in search of the optimal streaming wht

Log
of

size
(n

)
2

3
4

5
6

7

Log
of

str.w
idth

(k)
1

1
2

1
2

3
1

2
3

4
1

2
3

4
5

1
2

3
4

5
6

R
adix-

2
Pease

4
6

6
8

8
8

1
0

1
0

1
0

1
0

1
2

1
2

1
2

1
2

1
2

1
4

1
4

1
4

1
4

1
4

1
4

R
adix-

2
Iterative

4
6

4
8

6
4

1
0

8
6

4
1
2

1
0

8
6

4
1
4

1
2

1
0

8
6

4

Best
w

ith
BP

4
6

4
8

8
4

1
0

1
0

8
4

1
2

1
2

1
2

8
4

1
4

1
4

1
2

1
2

8
4

Best
w

ith
LP

4
6

3
8

5
3

1
0

6
5

3
1
2

?
?

?
3

?
?

?
?

?
?

Table
6:N

um
ber

of
stages

of
2
k
−
1

sw
itches

in
W

H
Ts

of
size

2
n

im
plem

ented
w

ith
a

stream
ing

w
idth

of
2
k.



4.5 conclusion and future work 61

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

Figure 22: Butterfly network computing a WHT of size 2n = 32 that, when streamed with
2k = 8, yields an implementation with minimal number of memory elements and
switches.
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the space of algorithmic variants, which we did for the WHT, revealing the existence
of algorithms that have strictly better RAM and logic requirements than what was
previously possible.

We considered the WHT for its simplicity but the idea is in principle applicable
to other regular algorithms. We give here a glance of the size of the space of sorting
networks algorithms, and of FFT variants:

FFT. Twiddle factors make the characterization of FFT datapaths more complicated.
Merging them with the butterflies yields promising results:

Proposition 9. For a positive integer n, and n+ 1 invertible n×n bit matrices P0, . . . ,Pn ∈
GLn(F2), the existence of n · 2n+1 complex numbers z10, . . . , z1

2n+1−1
, z20, . . . , zn

2n+1−1
such

that :

DFT2n = π(P0) ·
n∏
k=1

2n−1−1⊕
`=0

(
zk4` zk4`+1

zk4`+3 zk4`+2

) · π(Pk)
 .

only depends on P0:n and the spreading matrix X (71).

A proof of this proposition is available upon request. Additionally, an exhaustive
search shows that for n 6 4, the set of pairs (X,X−1P0:n) such that there exist such
complex numbers is a Cartesian product.

As an example, for n = 4, the valid FFT datapaths are those that satisfy:

X invertible, X−1 =


∗ ∗ ∗ ∗
∗ 1 ∗ ∗
∗ 1 ∗
∗ 1

 and X−1P0:n =


∗ ∗
∗ ∗

1 ∗ ∗
1 ∗ ∗ ∗

 ,

where each symbol ∗ can be replaced by any value in F2.
Sorting networks. Sorting networks SN2n use more stages than WHTs or FFTs,

which hinder the definition of a spreading matrix, and prevents an approach like the
one we had for WHT butterfly networks. However, sorting networks present some
degrees of freedom similar to the ones we found for the WHT. For all B ∈ GLn(F2)
and Q ∈ GLn−1(F2),

SN2n = SN2n · π(B), and (34)

I2n−1 ⊗ SN2 = π(Q⊕ I1) · (I2n−1 ⊗ SN2) · π(Q−1 ⊕ I1). (35)

The first degree of freedom (34) translates the fact that permuting the input of a sorting
network doesn’t change the result, and (35) means that we can swap SN2 blocs like
the butterflies in a WHT.

Additionally, for any vector u ∈ Fn−12 , the permutation π

(
In−1

uT 1

)
exchanges

pairs of elements. Therefore, we have:

I2n−1 ⊗ SN2 = (I2n−1 ⊗ SN2) · π
(
In−1

uT 1

)
, and (36)

I2n−1 ⊗ SN2 = π
(
In−1

uT 1

)
·

2n−1−1⊕
i=0

Xu
T ib
2

 . (37)
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Algorithm considered Number of RAM stages Number of switches stages Conjecture?

Radix-2 Pease n 2n No

Radix-2 iterative n− k+ 1 2(n− k+ 1) No

Best with BP dn/ke ? Yes, holds for n 6 8

Best with LP dn/ke ? Yes, holds for n 6 5

Combining (35), (36) and (37) shows that, for all function

f : {0, . . . , 2n−1 − 1}→ F2,

for all matrix Q ∈ GLn−1(F2), and for all pair of vectors u, v ∈ Fn−12 , there exists a
function

g : {0, . . . , 2n−1 − 1}→ F2

such that

2n−1−1⊕
i=0

X
f(i)
2 = π

(
Q

uT 1

)
·

2n−1−1⊕
i=0

X
g(i)
2

 · π(Q−1

vT 1

)
. (38)

These degrees of freedom may not be the only ones, but this already shows that the
design space for streaming networks is considerably larger than the one for WHTs.
Fully characterizing it, and searching through it for an optimal streaming implemen-
tation is a challenging problem.
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5
A D S L - B A S E D H A R D WA R E G E N E R AT O R I N S C A L A F O R FA S T
F O U R I E R T R A N S F O R M S A N D S O RT I N G N E T W O R K S

In this chapter, published in [74] and that extends the work published in [72], we
present a hardware generator for computations with regular structure including the
fast Fourier transform (FFT), sorting networks, and others. The input of the generator
is a high-level description of the algorithm; the output is a token-based, synchronized
design in the form of RTL-Verilog. Building on prior work, the generator uses sev-
eral layers of domain-specific languages (DSLs) to represent and optimize at different
levels of abstraction to produce a RAM- and area-efficient hardware implementation.
Two of these layers and DSLs are novel. The first one allows the use and domain-
specific optimization of the streaming permutations and the algorithmic structures
seen in the first part of this thesis. The second DSL enables the automatic pipelining
of a streaming hardware dataflow and the synchronization of its data-independent
control signals.

The generator including the DSLs are implemented in Scala, leveraging its type
system, and uses concepts from lightweight modular staging (LMS) to handle the
constraints of streaming hardware. Particularly, these concepts offer genericity over
hardware number representation, including seamless switching between fixed-point
arithmetic and FloPoCo generated IEEE floating-point operators, while ensuring type-
safety. In addition, automatic simplifications that exploit the particular structure of
the specified implementation are performed at each stage, thus reducing both ROM
consumption and DSP slices, and improving performance in terms of latency and
throughput.

We show benchmarks of generated FFTs, sorting networks and Walsh-Hadamard
transforms that outperform prior generators.

5.1 generation pipeline

We will refer to all functions that our generator implements as transforms. These
include the discrete Fourier transform, the Walsh-Hadamard transform, and sorting
networks. Our proposed generator receives as input the desired transform, its size (a
power of two), and some parameters that control the design space (e.g., streaming
width, iterative reuse applied or not, hardware arithmetic representation). The out-
put is the corresponding design in the form of RTL Verilog. The generation process
consists of the three layers pictured in Fig. 23. Each of these layers employs a DSL
to represent, manipulate, and optimize the algorithm at different levels of abstraction.
Each DSL is implemented as embedded DSL inside Scala, and staging is used to allow
manipulation. We first give a brief overview and then discuss the last two layers in
greater detail in subsequent sections.
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Figure 23: The different layers of our generator.

Operator Description

First-order operator

DFT2n Discrete Fourier transform for input size 2n

H2n Walsh-Hadamard transform for input size 2n

SN2n Sorting network for 2n inputs

π(P)
Linear permutation associated with

the invertible bit-matrix P [68]

Ti, T ′i Twiddle factors

Xc2 Configurable two-input sorter

Higher-order operator

A ·B Composition of operators A and B∏
iAi Enumerated composition of operators Ai⊕
iAi

Enumerated direct sum

(parallel composition) of operators Ai

Table 7: SPL operators used in our generator.

5.1.1 SPL

The first step for generating a hardware implementation consists of choosing a suit-
able algorithm. Following [47], we represent these algorithms as breakdown rules that
decompose a large transformation into smaller ones. These rules are represented us-
ing SPL, a mathematical language that represents linear algebra operations by matri-
ces and operators on these matrices [64, 85, 33]. We introduce next SPL, and describe
the rules we use for the different transforms we consider. Our implementation of this
DSL in Scala is similar as in [54], and includes the operators in Table 7. Higher-order
operators are used to recursively construct algorithms from first-order operators.
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Figure 24: Radix-2 Cooley-Tukey FFT datapaths operating on 2n = 8 elements. This algorithm
is used when iterative reuse is not enabled, as the permutations involved require
less resources when streamed.

DFT. In the case where the desired transform is a DFT, our generator uses two
breakdown rules. The first one, used in Fig. 2, is the constant-geometry radix-2r Pease
FFT [60]:

DFT2n = π(Jrn) ·
n/r−1∏
`=0

Tn/r−`−1 ·
2n−r⊕
i=1

DFT2r

 · π(Crn)
 . (39)

where T` is a diagonal matrix that performs element-wise complex multiplications
with the twiddle-factors1, π(Jrn) and π(Crn) are permutations (respectively the radix-2r-
reversal, and the stride-by-2r permutation), and

⊕2n−r

i=1 DFT2r represents 2n−r parallel
DFTs of size 2r each. As the expression within the product is always the same, this
algorithm is well suited for iterative reuse. However, for designs with streaming reuse
only, or for the generation of the base case 2r-FFT, the radix-2r Cooley-Tukey FFT (see
Fig. 24) is used instead, as the permutations it requires use less resources.

DFT2n = π(Sn−rn ) ·

n/r−1∏
`=0

(

2n−r⊕
i=1

DFT2r) · T ′` · π(Q`)

 · π(Jrn), (40)

where T ′` is a diagonal matrix, and π(Q`) a permutation.
WHT. The algorithms we are using to compute a WHT are similar to the one used

for DFTs, but do not include twiddle factors nor a final bit-reversal permutation. As
an example, the Pease-like WHT algorithm is expressed as

H2n =

n−1∏
j=0

2n−1⊕
i=1

DFT2

 · π(Cn)
 . (41)

SN. Sorting networks (SNs) are somewhat similar to FFTs or WHTs but require a
different form of butterflies, which are two-input sorters and thus nonlinear. Thus
an extension to SPL is required as described in [89] following concepts from [22].
Formally, a two-input sorter is described as Xc2. If c = 0, it sorts the two inputs in
ascending order, if c = 1 it sorts them in descending order. With this, we can express

1 T` =
⊕2n−r−1
i=0

⊕2r−1
j=0 ωj·i(r`) , where ω is the principal 2n-th root of unity, and i(r`) means that the r`

least significant bits of i have been set to 0.
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Figure 25: Batcher bitonic sorting network [4] operating on 2n = 8 elements. This design
corresponds to the SN1 architecture in [89].

SNs using the previous formalism. For streaming reuse only, we use a Batcher bitonic
SN [4] (see Fig. 25)::

SN2n =

n−2∏
j=0

2n−1−1⊕
i=0

X02

 · n−i−2∏
`=0

π(P`) ·
2n−1−1⊕

i=0

X02

 · π(Qj)


·
2n−1−1⊕
i=0

X02.

(42)

This corresponds to the architecture SN1 in [89].
When iterative reuse is desired, a Pease-like network is used [79]:

SN2n =

2n−1⊕
i=1

X02

 · n2−n−3∏
j=0

π(Sn) ·
2n−1⊕
i=1

X
f(i,j)
2

 , (43)

where f is a binary function. This second algorithm corresponds to the architecture
SN5 of [89], with the following improvements:

• The first n− 1 stages are removed, as these correspond to a fixed permutation
of the inputs, for which the order does not matter. This allows an increase of the
throughput of the implementations.

• In [89], Xc2 had an additional pass-through configuration. We change the stages
that used this mode such that the sorters perform useless comparisons instead
(by copying the configuration of the stage located n places later). Therefore, we
only use Xc2 as a sorter or as an inverted sorter, thus reducing the complexity of
the implementation.

• When folded for iterative reuse, a loop with an early termination (similar to the
structure used in Chapter 3 when fusing permutations) allows to simultaneously
implement a single stage of sorters while performing only the necessary number
of permutations (see Fig. 26b).

5.1.2 Streaming-block DSL

In the second step of the generator (Fig. 23), the SPL expression is formally folded
according to the streaming width, i.e., the number of elements of the dataset that the
design would be able to handle in each cycle. In the second step, the SPL expression
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Figure 26: Constant-geometry sorting network [79] operating on 2n = 8 elements. This design
loosely corresponds to the SN5 architecture in [89].
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(a) Before optimization.
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(b) After optimization.

Figure 27: Design of Fig. 10b expressed using the streaming block DSL. The necessary stream-
ing permutation is expanded into switches and RAM banks (dark blue rectangles).
The optimization here “unrolls” some parts of the permutation to remove an array
of multiplexer. Additionally, two arrays of switches were grouped for later mapping
to 4-to-1 multiplexers. These optimizations increase the throughput and reduce the
area of the final design.
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Operator Description SPL correspondence

First-order operator⊕
DFT2

Butterfly array

(add and substract its two inputs)

⊕
DFT2

Ti, T ′i Twiddle factors Ti, T ′i
Xc2 Configurable two-input sorter Xc2

πi(P0, . . . ,P`) Array of multiplexers π

(
It

Pi

)

σi(v0, . . . , v`) Single array of switches π


It

1
. . .

vTi 1



σ ′i((u0, v0), . . . , (u`, v`)) Double array of switches π



It

1
. . .

vTi 1

uTi 1


τi((A0,B0), . . . , (A`,B`)) Array of RAM banks π

(
Ai Bi

Ik

)
Higher-order operator

A0 ·A2 · · ·A`
Composition

(without iterative reuse)

∏`
i=0Ai

∏
iAi

Composition with iterative reuse

(A is implemented only once)

∏`
i=0Ai

∏`
i(AiBi)

Composition with iterative reuse

and early termination
B`
∏`−1
i=0(AiBi)

Table 8: Streaming blocks used in the streaming-block DSL. The last higher-order operator
allows to represent the structure introduced in Chapter 3.

is formally folded according to the streaming width, i.e., the number of elements of the
dataset that the design would be able to handle in each cycle. This includes inserting
the necessary datapaths for the streaming permutations from Chapter 2. The DSL used
thus expands SPL to include the streaming width (similar to the so-called Hardware-
SPL in [47]), but also the following needed streaming blocks:

During this stage, a set of rewriting rules is used to simplify the streaming blocks,
particularly in the case of a fused permutation. As an example, a radix-2 Pease DFT
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on 8 elements (39), folded with a streaming width of 4 ports using iterative reuse with
fused permutation would be represented in the streaming block DSL by

3∏
i=0

T2−i · 4⊕
`=1

DFT2 · πi (I2,S2,S2,S2) ·

σi

((
1

)
,
(
0

)
,
(
0

)
,
(
0

))
· π(S2) · σi

((
0

)
,
(
1

)
,
(
1

)
,
(
1

))
· π(S2)·

τi

(((
1

)
,
(
0 1

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

)))
· π(S2)·

σi

((
1

)
,
(
0

)
,
(
0

)
,
(
0

))
· π(S2) · σi

((
0

)
,
(
1

)
,
(
1

)
,
(
1

))
· π(S2)

)
, (44)

which corresponds to the dataflow pictured in Fig. 27a.
In this expression, the array of multiplexers πi (I2,S2,S2,S2) does not perform any-

thing during the last iteration. It is therefore interesting to “push” it after the early
termination of the loop, as it can be implemented using only a rewiring π(S2). The
array of switches that comes next, σi

((
1

)
,
(
0

)
,
(
0

)
,
(
0

))
, does not permute any-

thing during the first three iterations of the loop. It can be therefore “unrolled” into
a non-parameterized array of switches σ

((
1

))
, thus saving logic and latency in the

loop and therefore increasing throughput. At this point, the expression becomes

σ(
(
1

)
) ·

3∏
i=0

T2−i · 4⊕
`=1

DFT2 · π(S2) · π(S2) · σi
((
0

)
,
(
1

)
,
(
1

)
,
(
1

))
· π(S2)·

τi

(((
1

)
,
(
0 1

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

)))
· π(S2)·

σi

((
1

)
,
(
0

)
,
(
0

)
,
(
0

))
· π(S2) · σi

((
0

)
,
(
1

)
,
(
1

)
,
(
1

))
· π(S2)

)
.

Continuing these optimizations, and regrouping the two rightmost single arrays of
switches finally yields the expression

σ(
(
1

)
) ·

3∏
i=0

T2−i · 4⊕
`=1

DFT2 · σ(
(
1

)
) · π(S2)·

τi

(((
1

)
,
(
0 1

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

))
,
((
1

)
,
(
1 0

)))
· π(S2)·

σ ′i

(
(
(
1

)
,
(
0

)
), (
(
0

)
,
(
1

)
), (
(
0

)
,
(
1

)
), (
(
0

)
,
(
1

)
)
)
· π(S2)

)
, (45)

pictured in Fig. 27b.

5.1.3 Streaming-RTL DSL

In the final stage, the streaming blocks are transformed into a dependency graph
where each node, called a signal, represents a hardware operator that outputs one
value per cycle. A signal may have zero (constant signals, inputs, timers and counters),
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Operator Description Example

Constant signal

value is a numerical value.

Const(value) Constant signal Const(5.3)

Register signal

input is a signal.

Register(input) Flip/flop register input.register()

Arithmetic signals

lhs and rhs are signals of the same type.

Plus(lhs, rhs) Sum of the operands lhs + rhs

Minus(lhs, rhs) Difference of the operands lhs - rhs

Times(lhs, rhs) Product of the operands lhs * rhs

And(lhs, rhs) Binary AND of the operands lhs & rhs

Xor(lhs, rhs) Binary XOR of the operands lhs ∧ rhs

Memory signals

content is an indexed sequence of numerical values,

address is an unsigned signal,

input is a signal,

ram is a RAMw signal.

ROM(content, address) ROM tabulating content Vector(1.5, 18.2)(address)

RAMw(input, address) Write port of a RAM val r = RAM(in, address1)

RAMr(ram, address) Read port of a RAM r(address2)

Multiplexer signal

content is an indexed sequence of signals of the same type,

address is an unsigned signal.

Mux(content, address) Multiplexer Vector(rhs, lhs)(address)

Bus manipulation signals

lhs and rhs are signals of the same type,

range is a range of integers.

Cons(lhs, rhs) Binary concatenation lhs ++ rhs

Tap(lhs, range) Extraction of a selection of bits lhs(range)

Synchronization signals (provided by streaming blocks)

size is an integer.

Timer(size) Number of cycles since Timer(8)

the last dataset entered

Counter(size) Number of datasets that Counter(4)

have been processed

Table 9: Example of nodes (signals) used in the streaming-RTL DSL, and corresponding syntax.
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one (flip/flop registers used for pipelining), or more parent signals (see Table 9). In
the case of streaming reuse, this graph may contain loops.

The graph is constructed and represented using a Streaming-RTL DSL. Hardware
datatypes, pipelining decisions and synchronization issues are mostly abstracted from
this language. As an example, the implementation of the streaming block for the twid-
dles Tj can be written within a few lines, and works for every folding scenario and
hardware datatype:
case class Twiddles(n: Int, k: Int, j: Sig[Int])(implicit dt: HW[Complex[Double]])
extends SB[Complex[Double]]](1 << n, 1 << k){
override def implement(inputs: Vector[Sig[Complex[Double]]]) = {
// We first declare a timer that ticks for the duration of a dataset
val timer = Timer(1 << t)

// we define a (non-staged) Vector containing all 2^n th roots of unity
val rootsOfUnity = Vector.tabulate(1 << n){i =>
val angle = -2 * Math.Pi * i / (1 << n)
Complex(Math.cos(angle), Math.sin(angle))

}

// For each input signal,
inputs.zipWithIndex.map{case (input, p) =>
// we construct a signal corresponding to the index of a given element
// (concatenation of the t bits of the timer, and the k bits of
// the current port p),
val i = timer ++ p(Unsigned(k))

// we compute the corresponding twiddle factor,
val address = (i & 1) * ((i >>> (j + 1)) << j)
val twiddle = rootsOfUnity(address)

// and we return the product of the input signal with this twiddle factor
input * twiddle

} } }

As can be seen, only a few elements in the body of this function (Timer, Unsigned)
may indicate that this code represents a low-level hardware architecture. This im-
proves its readability and therefore its maintainability. However, all signals implicitly
carry an underlying hardware type (including the corresponding size in bits), and
timing information. All operations are bit- and cycle-accurate, and software and hard-
ware type-safety is ensured. This DSL and its implementation are detailed in the next
section.

Once constructed and optimized, the resulting graph is translated to a Verilog file.

5.2 a dsl for “streaming-rtl”

Our streaming-RTL DSL is used to construct from a streaming-block level representa-
tion of an algorithm a dependency graph that represents the final circuit. In this graph,
the nodes (signals) represent hardware operators, and the edges the dependencies be-
tween these signals. The DSL offers the following features:

• The nodes (signals) of the graph are manipulated exactly as the values they
would represent in a regular Scala program. Only their type changes.

• The language provides genericity over the actual hardware datatype and preci-
sion. However, the datatype can be made explicit, offering bit-accurate control.
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• Pipelining and synchronization of data-independent control is performed im-
plicitly, but timing information and manual pipelining remains available.

We discuss next the implementation of these abstractions, using the features offered
by the Scala type system.

5.2.1 Staging and LMS

The implementation of our DSL uses the concept of staging, in particular as done
in LMS [65], but using our own implementation. Staging allows to distinguish those
parts of the computation to be evaluated at generation time and those that will be im-
plemented in hardware via a type annotation. Specifically, staging is done by changing
a type T to the type Sig[T]; the latter means that computations on this type will be
delayed, and may become part of the hardware implementation.

For example, in the following code, the first line defines a function f1 that yields
the sum of its parameters (x and y of type Double) augmented by 18. The return
type (Double) is inferred by the compiler. In the second line however, f2 returns an
expression tree representing the computation on symbolic inputs.
def f1(x: Double, y: Double) = x + y + 18
def f2(x: Sig[Double], y: Sig[Double]) = x + y + 18

This tree can then be translated (unparsed) to RTL-Verilog, yielding an implementation
of two adders (adding two signals and an immediate).

This behavior is obtained through the class Sig[T], which instances represent the
nodes in an expression tree:
abstract class Sig[T:HW]{
// timing information
val delay: Option[Delay]

// field containing the hardware representation
val hw = implicitly[HW[T]]

}

This class takes as a type parameter the type T of the expression it represents. This
type is expected to come along with a hardware representation, provided as a type
class HW (see Section 5.2.2). Additionally, each node is expected to provide timing
information through the field delay (see Section 5.2.3).

The different types of computation are represented by a class that inherits from Sig:
// Addition of two nodes
case class Plus[T](lhs: Sig[T], rhs: Sig[T]) extends Sig[T] {...}

// Node containing a constant
case class Const[T:HW](value: T) extends Sig[T] {
override val delay = None

}

// Pipelining register
case class Register[T](input: Sig[T]) extends Sig[T]{
override val delay = input.delay.map(_ + 1)

}

...

Each instance Sig[T] offers (lifts) the same operators as a regular instance of T would
(see Section 5.2.4). These lifted operators return the corresponding node in the form
of another instance of Sig.
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5.2.2 Abstraction over hardware datatypes

Type classes [83, 53] are a form of static ad hoc polymorphism, that, contrary to in-
heritance, allows to retroactively add functionality to existing data types. For instance,
the following function f3 is generic in the type T of its parameters, but imposes that
this type is numeric:
def f3[T:Numeric](x: T, y: T) = x * y

In Scala, type classes are implemented using regular classes: f3 expects a third implicit
argument of type Numeric[T] containing, among other, the definition of the operator
* for two Ts.

Following the concept of abstraction over data representation from [54], instances of
Sig[T] (signals of T) carry their underlying hardware representation in the form of a
type class HW[T]:
abstract class HW[T](val size: Int){
// bit representation of a value
def getBits(value: T): BigInt

// creates a constant with this hardware representation
def apply(value: T) = Const(value)(this)

}

Not only does this type class provide an additional method getBits that returns the
bit representation of a given T, but it carries as meta-information the size in bits of
the representation. Concrete hardware representations are instances of classes derived
from HW[T]:
// Signed integer
case class Signed(_size: Int) extends HW[Int](_size){...}

// Unsigned integer
case class Unsigned(_size: Int) extends HW[Int](_size){...}

// Fixed point number
case class FxP(integral: Int, fractional: Int)
extends HW[Double](integral + fractional){...}

// IEE754 floating point
case class IEEE(wE: Int, wF: Int) extends HW[Double](wE + wF + 1){...}

// FloPoCo floating point
case class FloPoCo(wE: Int, wF: Int) extends HW[Double](wF + wE + 3){...}
...

A Scala Int could therefore be represented as a signed or unsigned integer of a
given size, and a Scala Double can be represented using a fixed-point representation,
a FloPoCo number2 or an IEEE 754 floating-point representation. This information
is passed to children nodes, and is used for the implementation of the lifted opera-
tors and for the representation of constants in the generated code. As an example,
depending on the underlying hardware type of its parameters, the previous example
f3 would seamlessly

• use fixed-point adders and represent 18 as a fixed-point immediate, or

2 The FloPoCo generator is called upon instantiation of the corresponding datatype class to generate the
different arithmetic operators. The result of this generation is then parsed to extract the latency of these
operators.
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• use FloPoCo generated floating-point adders and represent 18 with the corre-
sponding FloPoCo binary representation, or

• implement a conversion from an IEEE floating-point signal to a FloPoCo repre-
sentation, implement the FloPoCo adder, and implement the conversion back to
an IEEE representation.

5.2.3 Synchronization

Each signal has a delay field that represents the time needed for this signal to output
a valid value. It is used to check if two operands are synchronized, and, if it is not the
case, to suitably delay one of them using registers.

A delay consists of an integer representing a number of cycles, and a timeline indi-
cating to which “reference frame” this delay belongs. This timeline can be

• the primary timeline, referring to the number of cycles elapsed since the inputs
arrived in the module,

• a loop timeline, referring to the number of cycles elapsed since a dataset entered
within a loop, or

• a floating timeline, used by data-independent signals awaiting to be “synchro-
nized” with another timeline.

As an example, a Register would have the same delay as its input with a cycle number
incremented by one, while an input signal would have a delay of 0 on the primary
timeline.

Loop timelines. In the case of iterative reuse, the streaming product (the streaming
block that creates the loop and the multiplexer in Figs. 2b, 2d and 26b) creates a
new loop timeline, and implements its inner expression using this timeline. The cor-
responding latency is then measured using the maximal delay of the signals that are
returned. This information is then used during a second unparsing of the inner ex-
pression, where a possible lack of latency is compensated by a FIFO, or an increase
of latency of a potential inner temporal permutation. The streaming product then
presents its outputs using the same timeline as its inputs, delayed accordingly.

Floating timelines. In our generator, all data-independent control signals rely on
counters (that count the number of datasets that have passed) and on timers (that
count the number of cycles elapsed since the beginning of the current dataset). To
ensure that such control signals become available at the correct instant, each time a
new counter or timer is declared, a corresponding floating timeline is created. All data-
independent operations performed are then pipelined using this timeline. However,
when a signal with a floating timeline and a signal with an external timeline need to
be synchronized, a new floating delay node is inserted with the expected delay.

As an example, we consider the following function f4:
def f4(x: Sig[Int]) = {
val t = Timer(8) + 3
x ^ t

}

This function creates a 3-bit timer, and adds the constant 3 to it. This operation im-
plicitly adds a pipelining register, yielding a signal t with a delay of 1 on the floating
timeline associated with the timer. The input signal x is then xored with t. As these
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two signals are associated with different timelines, a floating delay signal depending
on t is created with the same delay member as x, and f4 finally returns a signal
representing a XOR of x and the floating delay signal.

After the graph construction, the floating timeline is synchronized with the other
timeline such that all floating delays can be implemented using the minimal number
of registers. In particular, this ensures that data-dependent signals never have to be
uselessly delayed. In our example, the floating timeline is synchronized such that the
floating delay is implemented with a direct assignment. Thus, a delay of one cycle on
the floating timeline corresponds to the delay of x.

To prevent nodes of a floating timeline from being synchronized with different in-
compatible timelines, and to avoid circular dependencies between floating timelines,
the first time a node of a floating timeline is synchronized with a node from another
timeline, the floating timeline is marked as “being in translation” with this other time-
line, and an error is thrown if a node is later synchronized with a third timeline. With
this relation, when the graph is built, timelines form a set of trees, rooted by the pri-
mary and loop timelines. Floating timelines are then synchronized starting from the
roots.

Synchronization tokens. When the graph is unparsed, token synchronization sig-
nals are generated to trigger the different counters and timers. Tokens for loop time-
lines are generated by “ORing” tokens of the primary timeline. As the maximal
throughput of the design is known at this time, tokens of the primary timeline can
be generated using consecutive resettable timers instead of a resettable shift-register.

In our previous example, the timer declared within f4 receives its token one cycle
before x becomes available, ensuring that t is computed at the right time.

5.2.4 Smart constructors

Lifted operators are provided using implicit classes, which make it possible to add a
posteriori methods and operators to existing objects.

For instance, the following class provides a + operator to any Sig[T], when T is a
numeric type:
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implicit class NumericSig[T:Numeric](lhs: Sig[T]){
// the default hardware representation when creating Const is the one of
// the left-hand side
implicit val hw = lhs.hw

// lhs + rhs in the case where lhs is a Sig[T] and rhs a T
def +(rhs: T): Sig[T] = lhs + Const(rhs)

// lhs + rhs in the case where both lhs and rhs are Sig[T]
def +(rhs: Sig[T]): Sig[T] = {
// check if lhs and rhs have the same representation
ensure(rhs.hw == hw)
(lhs, rhs).synch match {
// both lhs and rhs are Const
case (Const(x), Const(y)) => Const(x + y)

// one of the operands is null
case (Zero(), _) => rhs
case (_, Zero()) => lhs

// otherwise, we create a new node specialized for
// the hardware representation
case (lhs, rhs) => hw match {
case _: FloPoCo => PlusFPC(lhs, rhs).register
case _: IEEE => (lhs.toFPC + rhs.toFPC).toIEEE
case _: Signed | _: Unsigned | _: FxP => Plus(lhs, rhs).register
case _ => throw new Exception("No hardware implementation for +")

} } } }

Here, the operator first checks that the two operands have the same hardware type
(ensuring type-safety). It then synchronizes them, and handles particular cases (if the
two operands are constants, or if one of them is the constant zero). Finally, it creates
a new Plus signal, according to the hardware datatype, and adds pipelining registers
(in the case of a FloPoCo operator, the signal PlusFPC already takes into account the
latency of the operator. A final register is added. For signed, unsigned integers and
fixed-point representations, the pipeline has always a depth of one cycle. It would
however be possible to adapt it to the size of the operands, the target architecture or
the target frequency. In case of an IEEE representation, the pipelining is handled by
the underlying call to the FloPoCo operator.).

These smart constructors are responsible for major optimizations. As an example, the
constructor of ROM signals (implemented by adding a new apply method on indexed
sequences of T) checks every bit of the control signal, and returns a smaller ROM
in the case where one of them is constant. Particularly, it would return a constant if
the control signal is constant, thus guaranteeing an efficient implementation of the
twiddle stage Tj, even in non-streaming or non-iterative cases.

5.3 streaming-block dsl

The streaming-block DSL is an intermediate language between SPL and the Streaming-
RTL DSL (See Fig. 23). It supports optimizations at the streaming level, i.e. optimiza-
tions that take place once an algorithm has been “folded” according to a given stream-
ing width.
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5.3.1 Streaming blocks

Each streaming-block represents a hardware module that has the same number (K) of
inputs and outputs of the same hardware type (HW[T]), and that performs an opera-
tion on a dataset of size N. Streaming-blocks are comparable to SPL elements with a
streaming width information, and are instances of classes derived from SB:
abstract class SB[T:HW] (N: Int, K: Int){
// Size must be a multiple of the streaming width
assert(N % K == 0)

def implement(inputs: Vector[Sig[T]]): Vector[Sig[T]]
// Composition of blocks
def *(rhs: SB[T]) = Product(this, rhs)

}

Streaming blocks are expected to override a virtual method implement that constructs
the final circuit using the streaming-RTL DSL3. An operator * allows to compose
blocks, as explained in Section 5.3.2 below.

As an example, an array of butterflies (corresponding to the SPL expression⊕
DFT2) would be implemented as follows:

case class ButterflyArray[T:HW:Numeric] (_N: Int, _K: Int) extends SB[T](_N, _K){
// The streaming width must be even
assert(sw % 2 == 0)

override def implement(inputs: Vector[Sig[T]]) = {
assert(inputs.size == K)
// Compute the sum and difference of each pair of inputs
inputs.grouped(2).toVector.flatMap{case Vector(a, b) => Vector(a + b, a - b)}

} }

5.3.2 Higher-order blocks

Composition of blocks is achieved through the block Product.
case class Product[T:HW] private (factors: Vector[SB[T]]) extends
SB[T](factors.head.N, factors.head.K){
// Size and streaming width of all factors must be the same
assert(factors.forall(f => f.N == N && f.K == K))

override def implement(inputs: Vector[Sig[T]]) = {
assert(inputs.size == K)
// Implement all factors by connecting the outputs of one to the inputs of
// the next
factors.foldRight(inputs)((sb, cur) => sb.implement(cur))

} }

A companion object of Product contains a smart constructor (this is the one called
by the operator * in SB), along with a higher-order function that implements the block
corresponding to the SPL expression

∏limit
j=0 f(j).

object Product{
def apply[T:HW](lhs: SB[T], rhs: SB[T]): Product[T] = (lhs, rhs) match {

case (Product(f1), Product(f2)) => new Product(f1 ++ f2)
case (Product(f1), _) => new Product(f1 :+ rhs)
case (_, Product(f2)) => new Product(lhs +: f2)
case _ => new Product(Vector(lhs, rhs))

3 The real implementation adds an option to optionally add latency, and returns the minimal number of
cycles that the circuit can handle between datasets (gap).
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}

def apply[T:HW](limit: Int)(f: Sig[Int] => SB[T]): SB[T] = {
assert(limit > 0)
// Unsigned with the minimal size that can contain all j
val idxType = Unsigned(BigInt(limit - 1).bitSize)
(0 until limit).map(i=>Const(i)(idxType)).map(f).reduce(_*_)

} }

Note that the higher-order function expects a function that returns a block, and
that takes an integer signal as a parameter (and not directly an integer). This allows
to have another block, ItProduct with the same interface, but that produces a loop
for iterative reuse (by implementing a multiplexer, creating a new loop timeline, and
calling f with a Counter as a parameter).

The streaming-block DSL does not directly have any operator corresponding to the
direct sum of SPL:

⊕
j f(j). Before folding, the SPL expression must therefore have all

the direct sums fully distributed. Then, the remaining direct sums must be handled
within the streaming blocks themselves, as it is the case with ButterflyArray.

5.3.3 Permutation blocks

Apart from the direct sum operator, permutations are the only SPL operators that do
not have a direct equivalent in the streaming-block DSL. Only two types of permuta-
tions are directly implementable as streaming-blocks:

• Spatial permutations: these are permutations that permute elements only within
the same cycle. They can be implemented using switches (Fig. 11c), or multiplex-
ers (Fig. 11b).

• Temporal permutations: these permutations permute elements only between cy-
cles, but stay on the same port number. They can be implemented using an array
of memory banks as in Fig. 11a.

During the folding operation, general permutations are decomposed into these us-
ing the algorithms described in Chapter 2.

5.3.4 Optimizations

The optimizations taking place at this step mainly concern streaming permutations
and iterative reuse loops that have an early termination. They are described with more
details in Chapter 3. For instance, a streaming permutation block within an iterative
loop may be unrolled under certain conditions, thus reducing the global number of
multiplexers used within the whole design, or increasing the throughput of the design.
Another optimization consists in fusing two consecutive arrays of 2-input switches
into an array of 4-input switches, which can improve the resource used on some FPGA
architectures. Fig. 27 shows a case where these two optimizations were performed.

5.4 results

To validate the designs produced by our generator, we benchmarked them against the
equivalent circuits generated with [47]. All designs were synthesized using Vivado
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Figure 28: Resources used by different FFTs (40) in different configurations, on complex data
using 2× 32bits IEEE754 floating-point.
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2018.1, targeting a Virtex7 xc7vx1140 FPGA. The floating-point operators used in our
designs were generated using FloPoCo 4.1.2, targeting a 700MHz Virtex6 platform.

Figures 28, 29 and 30 show results after place-and-route for a variety of transforms,
algorithms, hardware datatypes and foldings. Each of these presents, for a given trans-
form size, the resources used in terms of logic slices and memory obtained for our
design and the corresponding design from [47] or [89]. Cooley-Tukey FFTs and WHTs
(Figs. 28a, 28b and 29) and Stone SNs (Figs. 30a and 30b) are implemented using only
streaming reuse. Batcher SNs (Figs. 30c and 30d) use both streaming and iterative
reuse. Pease FFTs (Figs. 28c, 28e, 28d and 28f) use streaming and iterative reuse with
fused permutations, as described in Chapter 3.

Figs. 28d and 28f also show a comparison with the designs obtained using Xilinx IP
generator Fast Fourier Transform 9.1. The parameters were set to resemble as much as
possible our architecture. A radix-2 Burst IO Lite architecture is used with 4 channels
(in Fig. 28d), and a radix-4 Burst IO is used with 8 channels (in Fig. 28f), in each
case with a natural output ordering, and using 32 bit fixed point representation for
both inputs and phase factors. However, as neither floating point computation nor the
streaming IO architecture are available when using multiple channels, no comparison
can be made for logic consumption, nor for the Cooley-Tukey architecture.

All our designs were generated with sufficient pipelining to reach the same fre-
quencies as [47] or [89] (in the order of 400MHz). The throughput of these designs are
therefore the same. Additionally, designs requiring complex multiplications (Fig. 28)
use an algorithm that yield the same number of DSP slices as [47].

We observe that the logic area consumption slightly increases. The gain obtained
using FloPoCo for the arithmetic part and the use of 4-input multiplexers is counter-
balanced by the additional logic needed to implement memory conflict avoidance as
described in [68].

On the other side, the number of BRAM tiles required is lower in average with
our generator. This is a direct consequence of the streaming permutations being im-
plemented with [68]. As it does not use double buffering, the capacity required to
implement streaming permutations is halved. However, this reflects on the number of
BRAMs only when the double buffer does not fit into a single BRAM, that is, for large
sizes of n (n > 10 in Fig. 28 and n > 9 in Fig. 30b). In addition, in the case of FFTs with
iterative reuse (Figs. 28d and 28f), the stride permutation and the bit-reversal are fused,
allowing to halve the number of BRAMs used for streaming permutations. However,
these techniques do not affect the number of RAM slices used as ROMs to store the
twiddle factors. Finally, both the designs we propose and those generated using [47]
require significantly fewer RAMs than Xilinx Fast Fourier transform IP cores.

In summary, our generator produces designs that use an equal amount or less mem-
ory than [47] or [89], particularly for large sizes, for the same number of DSP blocks,
and for a comparable area consumption. Our generator is thus able to improve the
state of the art for important parts of the design space of the considered transforms,
and yields new Pareto optima.

5.5 limitations and related work

We compare to related work and discuss limitations.
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5.5.1 Hardware DSLs implemented in Scala

The DSL we propose is specifically crafted for the generation of streaming Fourier
transforms and sorting networks on FPGAs, and provides only the primitives and the
amount of abstraction needed for this purpose. This differentiates it from lower level
hardware description languages written in Scala. For instance, Chisel [3] can represent
a much wider variety of hardware designs, but requires the pipelining registers to be
manually added. Targeting dataflow hardware, DFiant [62] proposes a dependency-
driven automatic pipelining similar to ours, but does not seem to support automatic
synchronization of data-independent controls. It uses literal types to expose the hard-
ware datatype and precision to the user, thus enforcing type safety at compile-time.
In our case, the hardware datatype is abstracted (provided via a type class), and hard-
ware type safety is only ensured at generation time. On the other hand, high-level
synthesis tools [80, 28] would offer even higher abstractions, up to the dataset level,
but would not allow the user to program at the port-level, thus making the implemen-
tation of our permutation streaming blocks difficult.

LMS [65] itself not only provides staging, but offers a tool chain to implement and
compile DSLs. Particularly, it grants automatic common subexpression elimination
during the construction of the dependency graph. However, in our case, floating time-
lines reduce the efficiency of such an optimization during the graph construction, and
our tests have shown that synthesis software such as Vivado already provide it, thus
limiting the use of implementing it. LMS provides as well a facility to manipulate the
generated graph, but as ours already includes timing information, these manipula-
tions are limited to timing invariant ones (fusing ROMs that contain identical values
for instance), for which a direct implementation is possible. The main optimizations
in our graph are made during its generation, using smart constructors.

The pipeline proposed in [27] to generate matrix operations illustrates the capability
of LMS to target hardware. It shares many similarities with ours, particularly its use
of LMS and FloPoCo. However, a significant part of the final RTL design is outsourced
to the external back-end LegUp [8].

5.5.2 Hardware generator for FFTs

Our generator only handles the generation of power-of-two-sized FFTs, whereas [47]
covers a larger set of sizes that can be factored into small primes and additional trans-
forms closely related to FFTs. An according extension of our generator should be
relatively straightforward. Note that [47] works as a back-end of Spiral [64], a genera-
tor written on a modified version of the GAP computer algebra system, thus requiring
high skills for its development.

SPL and Spiral have as well been implemented and enhanced in Haskell [42] and in
Scala [52] to produce efficient FFT implementations in C. A VHDL back-end for this
compiler is being developed [42].

5.5.3 Hardware generator for sorting networks

The work in [88, 89] presents a generator for streaming sorting networks, and we have
shown how our generator outperform its RAM consumption for the algorithms we
support. However, [88, 89] covers a larger space of algorithms (called SN2–4), and was
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originally targeting (and thus optimized for) a platform (Xilinx Virtex 5) older than
the one we used for our benchmarks (Xilinx Virtex 7).

Sorting is a classic topic in computer science [4, 37], and many high-performance
sorting networks have been manually implemented on FPGAs, using 2-inputs sorters
[48, 12], or using other basis elements like linear sorters [56].

5.6 conclusion

In this chapter, we have designed and implemented a generator for streaming FFTs
and sorting networks inside Scala, using embedded DSLs and the concept of staging.
It followed a principled design of domain-specific hardware generators using state-of-
the-art languages and language features.

Specifically, our generator employed a pipeline of three abstraction levels, corre-
sponding to three levels of DSLs. Two of them, the streaming-block DSL and the
streaming-RTL DSL are novel and were specifically designed to include state-of-the-
art components and enable the transformations and optimizations needed in FFTs.
The generator should be easily extendable to other DSP components related to FFTs.
A web version of our generator is available at [67], and its source code at [66].





Part III

L I N E A R A L G E B R A T H E O R E M S





6
A L O W E R - U P P E R - L O W E R B L O C K T R I A N G U L A R
D E C O M P O S I T I O N W I T H M I N I M A L O F F - D I A G O N A L R A N K S

In Chapter 2, we showed that the optimal implementation of an SLP (π(P), 2k) reduces
to a matrix decomposition problem: factor the invertible bit matrix

P =

(
P4 P3

P2 P1

)
=

(
It

L2 L1

)(
C4 C3

C1

)(
It

R2 R1

)
,

such that rankL2 + rankR2 is minimal. The existence of this decomposition and the
minimum was stated in Theorem 2.

In this chapter, published in [69], we provide a proof of this theorem for an invert-
ible matrix P over any field. The factorization decomposes P into a product of three
matrices that are lower block-unitriangular, upper block-triangular, and lower block-
unitriangular, respectively. In words, our goal is to make this factorization “as block-
diagonal as possible” by minimizing the ranks of the off-diagonal blocks. We give
lower bounds on these ranks and show that they are sharp by providing an algorithm
that computes an optimal solution. The proposed decomposition can be viewed as a
generalization of the well-known Block LU factorization using the Schur complement.

Theorem 2 uses this factorization for bit matrices, i.e., matrices over the Galois field
F2. However, we believe that because of its simple and natural structure, the matrix
decomposition is also of pure mathematical interest, and our proof only assumes a
field K. Our algorithm computes an optimal solution with an asympotic number of
operations cubic in the matrix size. We implemented the algorithm for finite fields,
for rational numbers, for Gaussian rational numbers and for exact real arithmetic for
validation. For a floating point implementation, numerical issues may arise.

6.1 problem statement

Given is a non-singular (invertible) matrix P ∈ GLt+k(K) over a field K. We partition
P as

P =

(
P4 P3

P2 P1

)
, such that P4 is t× t.

We denote the ranks of the submatrices with pi = rankPi, i = 1, 2, 3, 4. Matrices are
denoted with capital letters and vector spaces with calligraphic letters.

If P4 is non-singular, then a block Gaussian elimination uniquely decomposes P into
the form:

P =

(
It

L Ik

)(
C4 C3

C1

)
, (46)

where It denotes the t× t identity matrix. The rank of L = P2P
−1
4 is equal to p2, and C1

is the Schur complement of P4. Conversely, if such a decomposition exists for P, then
P4 is non-singular. This block LU decomposition has several applications including

91
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computing the inverse of P [13], solving linear systems [18]. The Schur complement is
also used in statistics, probability and numerical analysis [87, 17].

Analogously, the following decomposition exists if and only if P1 is non-singular:

P =

(
C4 C3

C1

)(
It

R Ik

)
. (47)

This decomposition is again unique, and the rank of R is p2.
In this article, we release the restrictions on P1 and P4 and propose the following

decomposition for a general P ∈ GLt+k(K):

P =

(
It

L Ik

)(
C4 C3

C1

)(
It

R Ik

)
, (48)

where in addition we want the three factors to be “as block-diagonal as possible,” i.e.,
that rankL+ rankC3 + rankR is minimal.

6.1.1 Lower bounds

The following theorem provides bounds on the ranks of such a decomposition:

Theorem 4. If a decomposition (48) exists for P ∈ GLt+k(K), it satisfies

rankC3 = p3, (49)

rankL > k− p1, (50)

rankR > t− p4, (51)

rankR+ rankL > p2. (52)

In particular, the rank of C3 is fixed and we have:

rankR+ rankL > max(p2,k+ t− p1 − p4). (53)

We will prove this theorem in Section 6.3. Next, we assert that these bounds are
sharp.

6.1.2 Optimal solution

The following theorem shows that the inequality (53) is sharp:

Theorem 5. If P ∈ GLt+k(K), then there exists a decomposition (48) that satisfies

rankR+ rankL = max(p2,k+ t− p1 − p4) and rankL = k− p1.

Additionally, such a decomposition can be computed withO((t+k)3) arithmetic operations.

We prove this theorem in Section 6.4 when p2 6 t+ k− p1 − p4, and in Section 6.5
for the case p2 > t+k−p1−p4. In both cases, the proof is constructive and we provide
a corresponding algorithm (Algorithms 3 and 4). Theorem 5 and the corresponding
algorithms are the main contributions of this article.

Two cases. As illustrated in Figure 31, two different cases appear from inequal-
ity (53). If p2 6 t + k − p1 − p4, bound (52) is not restrictive, and the optimal pair
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Figure 31: Possible ranks for L and R. On the left graph, p2 < t+ k− p1 − p4. On the right
graph, p2 > t+ k− p1 − p4. The dot shows the decomposition provided by Theo-
rem 5.

(rankL, rankR) is unique, and equals (k−p1, t−p4). In the other case, where p2 > t+
k− p1 − p4, bound (52) becomes restrictive, and several optimal pairs (rankL, rankR)
exist.

Example. As a simple example we consider the special case

P =

(
P3

P2

)
, with k = t.

In this case P2, P3 are non-singular and neither (46) nor (47) exists. Theorem 4 gives a
lower bound of rankR+ rankL > 2k, which implies that both R and L have full rank.
Straightforward computation shows that for any non-singular L,

P =

(
Ik

L Ik

)(
L−1P2 P3

−LP3

)(
Ik

−(LP3)
−1P2 Ik

)

is an optimal solution. This also shows that the optimal decomposition (48) is in gen-
eral not unique.

6.1.3 Flexibility

The following theorem adds flexibility to Theorem 5 and shows that a decomposition
exists for any Pareto-optimal pair of non-diagonal ranks that satisfies the bounds of
Theorem 4:

Theorem 6. If P ∈ GLt+k(K) and (l, r) ∈ N2 satisfies l > k − p1, r > t − p4, and
r + l = max(p2,k + t − p1 − p4), then P has a decomposition (48) with rankL = l and
rankR = r.

In the case where p2 6 t+ k− p1 − p4, the decomposition produced by Theorem 5

has already the unique optimal pair (rankL, rankR) = (k− p1, t− p4). In the other
case, we will provide a method in Section 6.6 to trade between the rank of R and the
rank of L, until bound (51) is reached. By iterating this method over the decomposition
obtained in Theorem 5, decompositions with various rank tradeoffs can be built.

Therefore, it is possible to build decomposition (48) for any pair (rankL, rankR)
that is a Pareto optimum of the given set of bounds. As a consequence, if f : N2 → R
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is weakly increasing in both of its arguments, it is possible to find a decom-
position that minimizes f(rankL, rankR). Examples include min(rankL, rankR),
max(rankL, rankR), rankL+ rankR, rankL · rankR or

√
rank2 L+ rank2 R.

Generalization of block LU factorization. In the case where P1 is non-singular, The-
orem 5 provides a decomposition that satisfies rankL = 0. In other words, it reduces
to the decomposition (47). Using Theorem 6, we can obtain a similar result in the case
where P4 is non-singular. Since in this case t− p4 = 0, it is possible to choose r = 0,
and thus obtain the decomposition (46).

6.1.4 Equivalent formulations

Lemma 1. The following decomposition is equivalent to decomposition (48), with analogous
constraints for the non-diagonal ranks:

P =

(
It

L2 L1

)(
C4 C3

Ik

)(
It

R2 R1

)
(54)

In this case, the minimization of the non-diagonal ranks is exactly the same problem as in
(48). However, an additional degree of freedom appears: any non-singular k× k matrix can be
chosen for either L1 or R1.

It is also possible to decompose P into two matrices, one with a non-singular leading princi-
pal submatrix L4 and the other one with a non-singular lower principal submatrix R1:

P =

(
L4 L3

L2 L1

)(
R4 R3

R2 R1

)
(55)

Once again, the minimization of rankL2 + rankR2 is the same problem as in (48). The two
other non-diagonal blocks satisfy rankL3 + rankR3 > p3.

Proof. The lower non-diagonal ranks are invariant through the following steps:
(48) ⇒ (54). If P has a decomposition (48), a straightforward computation shows

that:

P =

(
It

L C1

)(
C4 C3

Ik

)(
It

R Ik

)
,

which has the form of decomposition (54).
(54) ⇒ (55). If P has a decomposition (54), the multiplication of the two left factors

leads to formulation (55). In fact, L4 = C4 and R1 are both non-singular.
(55) ⇒ (48). If P has a decomposition (55), then using (46) on the left factor, and

(47) on the right factor, and multiplying the two central matrices leads to formulation
(48).

6.1.5 Related work

Schur complement. Several efforts have been made to adapt the definition of Schur
complement in the case of general P4 and P1. For instance, it is possible to define an
indexed Schur complement of another non-singular principal submatrix [87], or use
pseudo-inverses [9] for matrix inversion algorithms.
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Alternative block decompositions. A common way to handle the case where P4 is
singular is to use a permutation matrix B that reorders the columns of P such that the
new principal upper submatrix is non-singular [87]. Decomposition (46) then becomes:

P = PBBT =

(
It

L Ik

)(
C4 C3

C1

)
BT

However, B needs to swap columns with index > t; thus BT does not have the required
form considered in our work.

One can modify the above idea to choose B such that B−1 has the shape required
by decomposition (48):

P =

(
P4 P3

P2 P1

)(
It

−R Ik

)(
It

R Ik

)
=

(
P4 − RP3 P3

P2 − RP1 P1

)(
It

R Ik

)

Then the problem is to design R such that P4 − RP3 is non-singular and rank(P2 −
RP1) + rankR is minimal. This basic idea is used in [63], where, however, only rankR
is minimized, which, in general, does not produce optimal solutions for the problem
considered here.

Finally, our decomposition also shares patterns with a block Cholesky decompo-
sition, or the Block LDL decomposition, in the sense that they involve block uni-
triangular matrices. However, the requirements on P and the expectations on the de-
composition are different.

6.2 preliminaries

In this section, we will prove some basic lemmas that we will use throughout this
chapter.

6.2.1 Properties of the blocks of an invertible matrix

In this subsection, we derive some direct consequences of the invertibility of P on the
range and the nullspace of its submatrices.

Lemma 2. The following properties are immediate from the structure of P:

kerP1 ∩ kerP3 = {0} (56)

kerP2 ∩ kerP4 = {0} (57)

imP1 + imP2 = Kk (58)

imP3 + imP4 = Kt (59)

P2(kerP4)∩ P1(kerP3) = {0} (60)

P4(kerP2)∩ P3(kerP1) = {0} (61)

Proof. We prove here equation (60). If x ∈ kerP4 and y ∈ kerP3 satisfy P2x = P1y, we
have:(

P4 P3

P2 P1

)
·
(
x

−y

)
=

(
P4x− P3y

P2x− P1y

)
=

(
0

0

)

Since P is non-singular, x = y = 0, as desired.
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Operation related to subspaces Matrix operation Correspondence

Kernel of a matrix M kerM 〈kerM〉 = kerM

Direct sum of subspaces A,B
(
A B

) (
A B

)
= A⊕B

Intersection of subspaces A,B A∩B 〈A∩B〉 = A∩B
Complement of a subspace B in A A	B 〈A	B〉 ⊕B = A

Table 10: We summarize matrix operators to perform basic operations on subspaces. M is a
general matrix, while A and B are matrices with m rows that represent the subspaces
A and B; i.e. A = 〈A〉 and B = 〈B〉. Inspection of these routines shows that they all
can be implemented with O(m3) runtime.

These equalities yield the dimensions of the following subspaces:

Corollary 5.

dimP3(kerP1) = dim kerP1 = k− p1 (62)

dimP4(kerP2) = dim kerP2 = t− p2 (63)

dimP1(kerP3) = dim kerP3 = k− p3 (64)

dimP2(kerP4) = dim kerP4 = t− p4 (65)

dim imP1 ∩ imP2 = p1 + p2 − k (66)

dim imP3 ∩ imP4 = p3 + p4 − t (67)

Proof. We prove equation (62). Since, by (56), kerP1 ∩ kerP3 = {0}, the dimension of
the image of kerP1 under P3 has the same dimension as kerP1, which is k− p1.

Equation (66) is a consequence of equation (58) and of the rank-nullity theorem.

6.2.2 Algorithms on linear subspaces in matrix form

The algorithms we present in this chapter heavily rely on operations on subspaces of
Km. To make the representation of these algorithms more practical for implementa-
tion, we introduce a matrix representation for subspaces and formulate the subspace
operations needed on this representation.

We represent a linear subspace as an associated matrix1 whose columns form a basis
of this subspace. In other words, if A is a subspace of Km of dimension n, then we
represent it using a m×n matrix A such that imA = A. In this case, and only in this
case, we will use the notation 〈A〉 = imA to emphasize that the columns of A form a
linear independent set.

With this notation we can formulate subspace computations as computations on
their associated matrices as explained in the following. To formally emphasize this
correspondence, these operations on matrices will carry the same symbol as the sub-
space computation (e.g., ∩) they represent augmented with an overline (e.g., ∩). The
operations are collected in Table 10. All algorithms in this chapter are written as se-
quences of these matrix operations. Because of this, we implemented the algorithms by
first designing an object oriented infrastructure that provides these operations. Then
we could directly map the algorithms, as they are formulated, to code.

Direct sum of two subspaces. If 〈A〉, 〈B〉 6 Km are two subspaces, then the direct
sum can be computed by concatenating the two matrices: 〈A〉 ⊕ 〈B〉 = 〈

(
A B

)
〉.

1 We allow the existence of matrices with 0 column to represent the trivial subspace of Km.
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Null space of a matrix. Gaussian elimination can be used to compute the null space
of a given m×n matrix M. Indeed, if the reduced column echelon form of the matrix(
M

In

)
is blocked into the form

(
M4

M2 M1

)
, where M4 has m rows and no zero

column, then kerM = 〈M1〉. We denote this computation with kerM =M4.
Intersection of two subspaces. For two subspaces imA, imB 6 Km, the intersection

can be computed using the Zassenhaus algorithm. Namely, if the reduced column ech-

elon form of

(
A B

A

)
is blocked into the form

(
C4

C2 C1

)
, where C4 and C1 have

m rows and no zero column, then imA ∩ imB = 〈C1〉. We denote this computation
with A∩B = C4.

Complement of a subspace within another one. Let imA 6 imB 6 Km. Then, a
complement 〈C〉 of imA in imB, i.e., a space that satisfies 〈C〉 ⊕ imA = imB, can be
obtained as described in Algorithm 1

2. We denote this operation with C = B	A.

Algorithm 1 Complement of a subspace within another
Require: Two matrices A and B with m rows
Ensure: A matrix A	B such that 〈A	B〉 ⊕ imB = imA

C← A m× 0 matrix
for each column vector b of B do

if rank
(
A C b

)
> rank

(
A C

)
then

C←
(
C b

)
end if

end for
return C

6.2.3 Double complement

Lemma 3. Let C be a finite-dimensional vector space and let A,B 6 C with dimA > dimB.
Then, there exists a space S 6 C such that:{

S⊕A = C

S∩B = {0}

Proof. We first consider the case where C = A + B. We denote with P (resp. Q) a
complement of A∩B in A (resp. in B).

C = A+B

A

B

A∩B

A

P

Q

2 This algorithm can be implemented to run in a cubic arithmetical time by keeping a reduced column

echelon form of
(
A C

)
, which makes it possible to check the condition within the loop in a squared

arithmetical time.
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We show first that P ∩ Q = {0}. Let v ∈ P ∩ Q. As P 6 A and Q 6 B, we have
v ∈ A∩B. Therefore, v ∈ P∩A∩B = {0}, as desired.

We now denote with b = {b1, . . . ,bp} (resp. b ′ = {b ′1, . . . ,b ′q}) a basis of P (resp. Q),
implying q 6 p. Considering w = {b1 + b

′
1, . . . ,bq + b ′q}, the following holds:

i) w is linear independent: if {α1, . . . ,αq} ∈ Kq is such that
∑
αiwi = 0, then

∑
αibi =

−
∑
αib

′
i. As

∑
αibi ∈ P and

∑
αib

′
i ∈ Q, it comes that

∑
αib

′
i =
∑
αibi = 0. It

follows that for all i, αi = 0, yielding the result.

ii) 〈w〉 ∩ A = {0}: If v ∈ 〈w〉 ∩ A, then there exists {α1, . . . ,αq} ∈ Kq such that v =∑
αi(bi + b

′
i) ∈ A. It implies

∑
αib

′
i ∈ A. As the left hand side is in Q, it comes that∑

αib
′
i = 0. It follows that for all i, αi = 0, yielding the result.

iii) 〈w〉 ∩B = {0}: Same proof as above.
Then, since (A ∩ B) ⊕ Q = B, we have dimC = dimA + dimB − dim(A ∩ B) =

dimA+ q. Therefore, dim〈w〉 = q = dimC− dimA, and S = 〈w〉 satisfies the desired
conditions.

In the general case, where C > A+B, we use the same method, and simply add a
complement S ′ of A+B in C to the solution.

Algorithm 2 uses the method in this proof to compute a basis of S, given A, B and
C. Note that if dimA = dimB, then S is a complement of both A and B in C.

Algorithm 2 “Double complement” algorithm (Lemma 3)
Require: A, B and C, such that imA, imB 6 imC and rankA > rankB
Ensure: A matrix S such that 〈S〉 ⊕ imA = imC and 〈S〉 ∩ imB = {0}.
P ← A	(A∩B)
Q← B	(A∩B)
P ′ ← P truncated such that P ′ and Q have the same size
S ′ ← C	

(
A B

)
return

(
S ′ P ′ +Q

)

6.3 proof of theorem 4

We start with an auxiliary result that asserts that a decomposition of the form (48) is
characterized by L.

Lemma 4. Decomposition (48) exists if and only if L is chosen such that P1 − LP3 is non-
singular. In this case,

rankR = rank(P2 − LP4). (68)

Proof. We have:(
It

L Ik

)−1

P =

(
P4 P3

P2 − LP4 P1 − LP3

)
(69)

This matrix can be uniquely decomposed as in (47) if and only if P1 − LP3 is non-
singular, and we have the desired value for rankR.
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Now we start the actual proof of Theorem 4. If we assume that decomposition (48)
exists for P, then Lemma 4 yields

P =

(
It

L Ik

)
·
(
P4 − P3(P1 − LP3)

−1(P2 − LP4) P3

P1 − LP3

)
·(

It

(P1 − LP3)
−1(P2 − LP4) Ik

)
(70)

It follows:

• (49) is obvious from (70).

• Kk = im(P1 − LP3) 6 imP1 + imL. Thus, k 6 p1 + rankL, which yields (50).

• im(P2 − LP4) = (P2 − LP4)(K
k) > (P2 − LP4)(kerP4) = P2(kerP4). (51) now

follows from (65) and (68).

• (52) is a direct computation:

p2 = rank(P2 − LP4 + LP4)

6 rank(P2 − LP4) + rank(LP4)

6 rankR+ rankL.

6.4 proof of theorem 5 , case p2 6 t+ k− p1 − p4

In this section, we provide an algorithm to construct an appropriate decomposition,
in the case where p2 6 t+ k− p1 − p4 (Figure 31 left). This means that, using Lemma
4, we have to build a matrix L that satisfies

P1 − LP3 is non-singular,

rankL = k− p1,

rank(P2 − LP4) = t− p4.

6.4.1 Sufficient conditions

We first derive a set of sufficient conditions that ensure that L satisfies the two fol-
lowing properties: P1 − LP3 non singular (Lemma 5) and rank(P2 − LP4) = t − p4
(Lemma 6).

Lemma 5. If rankL = k − p1 and imP1 ⊕ LP3(kerP1) = Kk, then P1 − LP3 is non-
singular.

Proof. We denote with U a complement of kerP1 in Kk, i.e., Kk = kerP1 ⊕ U.
This implies imP1 = P1(K

k) = P1(U). Now, let imP1 ⊕ LP3(kerP1) = Kk. Hence,
dimLP3(kerP1) = k − p1 = rankL from which we get imL = LP3(kerP1). In
particular, LP3(U) 6 imL = LP3(kerP1). Further,

im(P1 − LP3) = (P1 − LP3)(U⊕ kerP1)

= (P1 − LP3)(U) + LP3(kerP1)
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As LP3(U) 6 LP3(kerP1) and imP1 ∩ LP3(kerP1) = {0}, we have:

im(P1 − LP3) = P1(U) + LP3(kerP1)

= imP1 + LP3(kerP1)

= Kk

as desired.

Lemma 6. If, for every vector v of imP4, L satisfies Lv ∈ P2P−14 ({v}), then rank(P2−LP4) =
t− p4.

Proof. In the proof of Theorem 4 (Section 6.3) we already showed that im(P2 − LP4) >
P2(kerP4).

Let now Lv ∈ P2P−14 ({v}) for all v ∈ imP4. If u ∈ Kt, we have:

(P2 − LP4)u = P2u− LP4u

∈ P2u− P2P
−1
4 ({P4u})

∈ P2u− P2(u+ kerP4)

∈ P2(kerP4)

Therefore, im(P2 − LP4) = P2(kerP4). Thus, rankP2 − LP4 = t− p4.

The following lemma summarizes the two previous results:

Lemma 7. Let Y be a complement of imP1 and T a complement of P4(kerP2) in imP4. If

imL = Y,

L · P3(kerP1) = Y,

L · v ∈ P2P−14 ({v}), ∀v ∈ T,

L · P4(kerP2) = {0},

then L is an optimal solution3.

6.4.2 Building L

We now build a matrix L that satisfies the previous set of sufficient conditions. For all
v in a complement T of P4(kerP2), L has to satisfy Lv ∈ P2P−14 ({v}). We first show that,
given a suitable domain and image, it is possible to build a bijective linear mapping
that satisfies this property.

Lemma 8. Let P4(kerP2) ⊕ T = imP4 and P2(kerP4) ⊕ V = imP2. If we define the
subspace

F = P−14 (T)∩ P−12 (V),

then the mapping f : T → V such that for all v ∈ F, f(P4v) = P2v, is well defined and is an
isomorphism.

3 The proposed set of sufficient conditions is stronger than necessary; if we replace the last condition with
L · P4(kerP2) 6 P2(kerP4), if and only if holds.
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Proof. We prove the lemma by first considering two functions f1 and f2 that are P4
and P2 restricted to F as shown in the diagram. We show that both are isomorphisms.
Then f = f2 ◦ f−11 is the desired function.

T V

F

f

f1 : x 7→ P4x f2 : x 7→ P2x

We begin with the surjectivity of f1. Let x ∈ T. As T 6 imP4, there exists a vector v
such that P4v = x. The coset v+ kerP4 is obviously a subset of P−14 (T). Additionally,
its image under P2, the coset P2(v+ kerP4) = P2v+ P2 kerP4 contains a unique rep-
resentative P2vf in V, since imP2 = P2(kerP4)⊕ V. Therefore, vf ∈ P−12 (V), and thus
vf ∈ F and f1(vf) = x, as desired.

We now prove that f1 is injective. Let v ∈ ker f1 6 F. We have P2v ∈ V. Since
v ∈ kerP4, P2v ∈ P2 kerP4. Since P2(kerP4) ∩ V = {0}, P2v = 0 and thus v ∈ kerP2.
Equation (57) shows that v = 0, as desired. Thus, f1 is bijective.

The proof that f2 : F → V, v 7→ P2v is bijective is analogous. It follows that
f = f2 ◦ f−11 is the desired isomorphism.

As explained below, we now build a matrix L that matches the conditions listed in
Lemma 7. As they involve two spaces that may not be in a direct sum, P3(kerP1) and
a complement of P4(kerP2) in imP4, some precautions must be taken.

We first construct the image Y of L. It must be a complement of imP1 and must
contain a complement Y1 of P2(kerP4) in imP2. From p2 6 t+ k− p1 − p4 we get
t− p4 > p1 + p2 − k and thus dim(P2(kerP4)) > dim(imP1 ∩ imP2) using (65) and
(66). Therefore, we can use the Lemma 3 to build a space Y1 such that:{

Y1 ⊕ P2(kerP4) = imP2,

Y1 ∩ imP1 ∩ imP2 = {0}.

We then complete Y1 to form a complement Y of imP1.
We now decompose Kt the following way:

X1 ⊕ X2 ⊕ X3 ⊕ P4(kerP2) ⊕ X4 = Kt

P3(kerP1)

imP4

We define X2 = P3(kerP1) ∩ imP4. X2 ∩ P4(kerP2) = {0} according to equation (61).
Then, we define X3 as a complement of P4(kerP2)⊕X2 in imP4 and X1 as a comple-
ment of X2 in P3(kerP1). X4 is defined as a complement of X1⊕X2⊕X3⊕ P4(kerP2).

Finally, we build L through the associated mapping, itself defined using a direct
sum of linear mappings defined on the following subspaces of Kt:

• We use Lemma 8 to construct a bijective linear mapping f from T = X2⊕X3 onto
V = Y1. By definition, for all v ∈ T, f satisfies f(v) ∈ P2P−14 ({v}). Furthermore, as
f is bijective, its restriction on X2 is itself bijective onto f(X2).



102 a lul block triangular decomposition with min. off-ranks

• We complete this bijective linear mapping with g, a bijective linear mapping be-
tween X1 and a complement Y2 of f(X2) in Y. Such a mapping exists as we have
dimX1 − dimY2 = dimX1 + dimX2 − dimY = dim(P3(kerP1)) − (k− p1) = 0.
This way, the restriction of f⊕ g on X1 ⊕X2 = P3(kerP1) is bijective onto Y.

• We consider the mapping h that maps P4(kerP2)⊕X4 to {0}.

X1 X2 ⊕X3 P4(kerP2)⊕X4

Y2 Y1 {0}

g f h

The matrix associated with the linear mapping f⊕ g⊕ h satisfies all the conditions
of Lemma 7, and is therefore an optimal solution.

This method is summarized in Algorithm 3, which allows us to construct a solution
for Theorem 5. Its key part is the construction of a basis of F, which uses a generalized
pseudo-inverse P†4 (resp. P†2) of P4 (resp. P2), i.e., a matrix verifying P4P

†
4P4 = P4 (resp.

P2P
†
2P2 = P2). This algorithm is a main contribution of this article.

Algorithm 3 Constructing L (Theorem 5), case p2 6 t+ k− p1 − p4
Require: t,k and P ∈ GLt+k(K) such that p2 6 t+ k− p1 − p4
Ensure: L
Y1 ← Alg. 2 with A = P2 · kerP4, B = P1 ∩P2, C = P2

Y ←
(
Y1 It	

(
Y1 P1

))
X2 ← (P3 · kerP1)∩P4
X3 ← P4	

(
(P4 · kerP2) X2

)
)

X1 ← (P3 · kerP1)	X2
X4 ← It	

(
P4 P3 · kerP1

)
F←

(
kerP4 P

†
4 ·
(
X2 X3

))
∩
(

kerP2 P
†
2 · Y1

)
Y2 ← Y	(P2 · (

(
kerP4 P

†
4 ·X2

)
∩ F))

LR ←
(
P4 · F X1 P4 · kerP2 X4

)
LL ←

(
P2 · F Y2 Z

)
, where Z is a zero filled matrix such that LL has the same number of

columns as LR
return LL · L−1R

Inspection of this algorithm shows that its arithmetic cost is O((t+ k)3).
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6.4.3 Example

We illustrate our algorithm with a concrete example. Motivated by our main applica-
tion (Theorem 2) we choose as base field K = F2. For t = 4 and k = 3, we consider
the matrix

P =

(
P4 P3

P2 P1

)
=



1 1 . . 1 . 1

. . 1 . . 1 .

1 1 . 1 1 1 1

. . . . . 1 1

1 . 1 1 . . .

1 1 . . 1 1 1

. 1 . . . . .


.

We observe p2 = 3 6 t+ k− p1 − p4 = 4+ 3− 1− 3. Therefore, we can use Algo-
rithm 3 to compute a suitable L.

The first step is to compute Y1. We have:

P2 · kerP4 =

1.
1

 and P1 ∩P2 =

 .

1

.

 .

Using Algorithm 2, we get

Y1 =

1 1

1 .

1 .

 .

Then, we complete it to form a complement of imP1:

Y =

1 .

. 1

. 1

 .

The next step computes the different domains:

X2 =


1

1

.

.

 , X3 =


1

.

.

.

 , X1 =


.

.

.

1

 and X4 = ().

To compute F, we need pseudo-inverses of P4 and P2:

P
†
4 =


. . . .

1 . . .

. 1 . .

1 . 1 .

 and P†2 =


. 1 1

. . 1

. . .

1 1 1

 .
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We then obtain:

F =


. .

1 .

. 1

1 .

 .

Then, we compute Y2:

Y2 =

1.
.

 .

Now we can compute L. With

LR =


1 . . .

. 1 . 1

. . . 1

. . 1 .

 ,LL =

1 1 1 .

1 . . .

1 . . .


we get

L = LL · L−1R =

1 1 1 1

1 . . .

1 . . .

 .

The final decomposition is now obtained using (70):

P =



1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

1 1 1 1 1 . .

1 . . . . 1 .

1 . . . . . 1





1 . . 1 . 1

. . 1 . . 1 .

. 1 . 1 1 1 1

1 . . . . 1 1

. . . . 1 1

. . . . . 1 .

. . . 1 . 1





1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

. . . . 1 . .

. . . . . 1 .

1 . . . . . 1


.

This decomposition satisfies rankL = 2 and rankR = 1, thus matching the bounds
of Theorem 4.

If we consider the application presented in Theorem 2, this decomposition provides
a way to implement in hardware the permutation associated with P on 128 elements,
arriving in chunks of 8 during 16 cycles. This yields an implementation consisting
of a permutation network of 4 2×2-switches, followed by a block of 8 RAM banks,
followed by another permutation network with 8 2×2-switches.



6.5 proof of theorem 5 , case p2 > t+ k− p1 − p4 105

6.5 proof of theorem 5 , case p2 > t+ k− p1 − p4

In this case, the third inequality in Theorem 4 is restrictive (Figure 31 right). Using
again Lemma 4, we have to build a matrix L satisfying:

P1 − LP3 is non-singular

rankL = k− p1

rank(P2 − LP4) = p1 + p2 − k

As in the previous section, we will first provide a set of sufficient conditions for L
and then build it.

6.5.1 Sufficient conditions

The set of conditions that we will derive in this subsection will be slightly more
complex than in the previous section, as we cannot reach the intrinsic bound of
rank(P2 − LP4). Particularly, we cannot use Lemma 6 directly.

Lemma 9. If W is such that W⊕ imP1 = Kk and T is such that:
T ∩ P4(kerP2) = {0}

T 6 imP4

dimT = k− p1,

then if L satisfies
imL = W

L · P3(kerP1) = W

L · v ∈ P2P−14 ({v}),∀v ∈ T

L · P4(kerP2) = {0}

then L is a solution4 that satisfies rankL = k− p1 and rank(P2 − LP4) = p1 + p2 − k.

Proof. Let L be a matrix that satisfies the conditions above. Using Lemma 5 as before,
we get that rankL = k− p1 and P1 − LP3 invertible.

Now, with the definition of T, we can define a dimension p1 + p2 + p4 − t− k space
T ′ such that imP4 = P4(kerP2)⊕ T ⊕ T ′. Then, we define a matrix L ′ such that:

L ′ · v ∈ Lv− P2P−14 ({v}), for all v ∈ T ′

L ′ · v = 0, for all v in P4(kerP2)⊕ T

L ′ · v = 0, for all v in a complement of imP4,

L ′ is therefore a rank p1+p2+p4− t−k matrix such that for all v ∈ imP4, (L−L ′)v ∈
P2P

−1
4 ({v}). We apply Lemma 6 on L− L ′ and get:

rank(P2 − LP4) = rank(P2 − (L− L ′)P4 − L
′P4)

6 rank(P2 − (L− L ′)P4) + rank(L ′P4)

6 dimP2(kerP4) + rankL ′

6 p1 + p2 − k,

4 If we replace the last condition with L · P4(kerP2) 6 P2(kerP4), this set of conditions is actually equiva-
lent to having an optimal solution L that satisfies rankL = k− p1.
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as desired.

6.5.2 Building L

We will build a matrix L that matches the conditions listed in Lemma 9. As before,
we consider the image Y of L first. We will design it such that it is a complement of
imP1, and that is contained in a complement Y ′ of P2(kerP4) in imP2. Using p2 >
t+ k− p1 − p4 with (65) and (66) we get dim(P2 kerP4) 6 dim(imP1 ∩ imP2). With
Lemma 3, we can construct a space Y that satisfies{

Y⊕ (imP1 ∩ imP2) = imP2

Y∩ P2(kerP4) = {0}

This space satisfies Y ⊕ imP1 = imP2 + imP1 = Kk according to (58), and can be
completed to a complement Y ′ of P2(kerP4) in imP2. Note that we will use Y ′ only to
define f; the image of L will be Y.

Now, as before, we build L through the associated mapping, itself defined using a
direct sum of linear mappings defined on the same subspaces of Kt as in Section 6.4.2.

• We use Lemma 8 to construct a first bijective linear mapping f ′ between T ′ =

X2 ⊕X3 and Y ′. As f ′ is bijective, we can define T = f ′−1(Y) and f = f ′ T . Thus,
T satisfies the properties in Lemma 9 and L the condition for all v ∈ T,Lv ∈
P2P

−1
4 ({v}).

• Then, we consider a complement X ′1 of T ∩X2 in P3(kerP1), a complement Y ′2
of f(T ∩X2) in Y and a bijective linear mapping g between X ′1 and Y ′2. This way,
the restriction of f⊕ g on P3(kerP1) is bijective onto Y.

The rest of the algorithm in similar to the previous case:

• We consider the mapping h that maps P4(kerP2) to {0}.

• To complete the definition of L, we take a mapping h ′ between a complement
X ′4 of X ′1 ⊕ T ⊕ P4(kerP2) and {0}.

X ′1 T = f ′−1(Y) P4(kerP2) X ′4

Y ′2 Y {0}

g f h h ′

The matrix associated with the mapping f⊕ g⊕h⊕h ′ satisfies all the conditions of
Lemma 9, and is therefore an optimal solution.

Algorithm 4 summarizes this method, and allows to construct a solution for Theo-
rem 5, in the case where p2 > t+ k− p1 − p4. This algorithm is a main contribution
of this article.

As in the previous case, this algorithm has an arithmetic cost cubic in t+ k.
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Algorithm 4 Constructing L (Theorem 5), case p2 > t+ k− p1 − p4
Require: t,k, P ∈ GLt+k(K) such that p2 > t+ k− p1 − p4
Ensure: L
Y ← Alg. 2 with A = P1 ∩P2, B = P2 · kerP4 and C = P2
X2 ← (P3 · kerP1)∩P4
X3 ← P4	

(
P4 · kerP2 X2

)
F←

(
kerP4 P

†
4 ·
(
X2 X3

))
∩
(

kerP2 P
†
2 · Y

)
X ′1 ← (P3 · kerP1)	((P4 · F)∩X2)
X4 ← It	

(
X ′1 P4 · F P4 · kerP2

)
Y ′2 ← Y	(P2 · (F∩

(
P
†
4 ·X2 kerP4

)
))

LR ←
(
P4 · F X ′1 P4 · kerP2 X4

)
LL ←

(
P2 · F Y ′2 Z

)
, where Z is a zero filled matrix such that LL has the same number of

columns as LR
return LL · L−1R

6.5.3 Example

We now consider, for K = F2, t = 4 and k = 3, the matrix

P =

(
P4 P3

P2 P1

)
=



. 1 1 1 1 . .

1 . . 1 . 1 1

. 1 1 1 . 1 1

1 1 . 1 . 1 1

1 . . 1 . 1 .

. . . 1 . 1 .

1 . 1 1 1 1 .


.

We observe p2 = 3 > t+ k− p1 − p4 = 4+ 3− 2− 3. Therefore, we use Algorithm 4

to compute a suitable L.
The first step is to compute Y. We have:

P2 · kerP4 =

 .

1

1

 and P1 ∩P2 =

 .

1

.

 .

Using Algorithm 2, we get

Y1 =

1 1

1 .

1 .

 .

Then, we complete it to form a complement of imP1:

Y =

1 .

1 .

. 1

 .
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The next step computes the different domains:

X2 = () and X3 =


1 .

. 1

1 .

. .

 .

To compute F, we need pseudo-inverses of P4 and P2:

P
†
4 =


. . . .

. 1 . 1

. . 1 1

. 1 . .

 and P†2 =


1 1 .

. . .

1 . 1

. 1 .


and get

F =


1

1

.

.

 .

Next we compute the remaining subspaces that depend on F:

X ′1 =


.

1

1

1

 , X4 =


1

.

.

.

 , and Y ′2 =

1.
1

 .

Noe we can compute L. With

LR =


1 . 1 1

1 1 . .

1 1 1 .

. 1 1 .

 ,LL =

1 1 . .

. . . .

1 1 . .


we get

L = LL · L−1R =

. 1 . .

. . . .

. 1 . .

 .

The final decomposition is obtained using (70):

P =



1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

. 1 . . . . .

. . . . . . .

. 1 . . . . .





. 1 . 1 1 . .

1 . . . . 1 1

. 1 1 . . 1 1

1 1 . . . 1 1

. . . . . . 1

. . . . . 1 .

. . . . 1 . 1





1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

. . 1 . 1 . .

. . . 1 . 1 .

. . . . . . 1


.
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rankR

rankL

t− p4

k− p1

p2

p2

L

L+ L ′

Figure 32: L ′ trades a rank of L for a rank of R on the associated decomposition.

This decomposition satisfies rankL = 1 and rankR = 2, thus matching the bounds
of Theorem 4.

As before, if we consider the application of Theorem 2. The decomposition shows
that we can implement in hardware the permutation associated with P on 128 ele-
ments, arriving in chunks of 8 during 16 cycles through a permutation network of 8
2×2-switches, followed by a block of 8 RAM banks, followed by another permutation
network with 4 2×2-switches.

6.6 rank exchange

The solution built in Section 6.5.2 satisfies rankL = k − p1 and rank(P2 − LP4) =

p1 + p2 − k. In this section, we will show that it is possible to construct a solution for
all possible pairs (rankL, rank(P2 − LP4)) matching the bounds in Theorem 4. First,
we will construct a rank 1 matrix L ′ that will trade a rank of L for a rank of P2 − LP4
(i.e., rank(L+ L ′) = 1+ rankL, rank(P2 − (L+ L ′)P4) = rank(P2 − LP4) − 1 and P1 −
(L+ L ′)P3 is non-singular) (see Figure 32). This method can then be applied several
times, until rank(P2 − LP4) reaches its own bound, t− p4.

We assume that L satisfies the following conditions:
P1 − LP3 is non-singular

rankL+ rank(P2 − LP4) = p2
rank(P2 − LP4) > t− p4

As in the previous sections, we first formulate sufficient conditions on L ′, before
building it.

6.6.1 Sufficient conditions

We now define C = P4 − P3(P1 − LP3)
−1(P2 − LP4).
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Lemma 10. If z ∈ Kt satisfies z /∈ ker(P2 − LP4) + kerP4 and L ′ satisfies:
rankL ′ = 1

L ′P4 ker(P2 − LP4) = {0}

L ′P4z = (P2 − LP4)z

L ′Cz 6= 0
Then L + L ′ is an optimal solution to our problem that satisfies rank(P2 − (L + L ′)P4) =

rank(P2 − LP4) − 1.

Proof. We first prove that P1 − (L+ L ′)P3 = (I− L ′P3(P1 − LP3)
−1)(P1 − LP3) is non

singular. Let x ∈ ker(I− L ′P3(P1 − LP3)−1). x satisfies:

x− L ′P3(P1 − LP3)
−1x = 0.

Therefore, x ∈ imL ′. As rankL ′ = 1, ∃λ ∈ K, x = λ(P2 − LP4)z = λL ′P4z. It comes that

λL ′P4z− λL
′P3(P1 − LP3)

−1(P2 − LP4)z = 0.

Finally, λL ′Cz = 0, which implies, as L ′Cz 6= 0, λ = 0, as desired.

We now prove that rank(P2 − (L + L ′)P4) = rank(P2 − LP4) − 1. We have already
ker(P2 − (L+ L ′)P4) 6 ker(P2 − LP4) as L ′P4 ker(P2 − LP4) = {0}. We also have (P2 −

(L ′+L)P4)z = 0. As z /∈ ker(P2−LP4)+kerP4, ker(P2−(L+L ′)P4) > ker(P2−LP4)⊕
〈z〉. Therefore,

dim ker(P2 − (L+ L ′)P4) > 1+ dim ker(P2 − LP4),

as desired.

6.6.2 Building L ′

Lemma 11. ker(P2 − LP4)∩ kerP4 = {0}

Proof. This is a consequence of (69): the block column

(
P4

P2 − LP4

)
has full rank.

Thus, we have dim(ker(P2 − LP4) ⊕ kerP4) = 2t − p4 − rank(P2 − LP4) < t.
Decomposition (70) shows that C is non-singular, and using Lemma 11, we
have dimC−1P4 ker(P2 − LP4) = dimP4 ker(P2 − LP4) = dim ker(P2 − LP4) =

t− rank(P2 − LP4). Using Lemma 3, we can build a space Z such that:{
Z⊕ ker(P2 − LP4)⊕ kerP4 = Kt

Z∩C−1P4 ker(P2 − LP4) = {0}

We can now pick a nonzero element z ∈ Z and build a corresponding L ′:

• If Cz ∈ P4 ker(P2 − LP4)⊕ 〈P4z〉: We take a complement A of P4 ker(P2 − LP4)⊕
〈P4z〉 and build L ′ such that:{

L ′P4z = (P2 − LP4)z

L ′(P4 ker(P2 − LP4)⊕A) = {0}

We have L ′Cz 6= 0. In fact, Cz can be uniquely decomposed in the form k+ λP4z,
where k ∈ P4 ker(P2 − LP4) and λ ∈ K. As z /∈ C−1P4 ker(P2 − LP4), λ 6= 0. Then,
L ′Cz = L ′k+ L ′λP4z = 0+ λ(P2 − LP4)z 6= 0.
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• If Cz /∈ P4 ker(P2 − LP4) ⊕ 〈P4z〉: The vector a = Cz − P4z is outside of
P4 ker(P2 − LP4)⊕ 〈P4z〉. Therefore, it is possible to build a complement A of
P4 ker(P2 − LP4)⊕ 〈P4z〉 that contains a. Then, we build L ′ as before:{

L ′P4z = (P2 − LP4)z

L ′(P4 ker(P2 − LP4)⊕A) = {0}

As in the previous case, we have L ′Cz = L ′a+ L ′P4z = 0+ (P2 − LP4)z 6= 0.
In both cases, the matrix L ′ we built satisfies the conditions of Lemma 10. Therefore,
L+ L ′ is the desired solution.

Algorithm 5 summarizes this method, and allows to build a new optimal solution
from a pre-existing one, with a different trade-off. This algorithm is a main contribu-
tion of this article.

Algorithm 5 Exchanging ranks between L and R (Theorem 6)

Require: P and a solution L such that rank(P2 − LP4) > t− p4
Ensure: A new optimal solution L with a rank incremented by 1
K← ker(P2 − LP4)
C← P4 − P3(P1 − LP3)

−1(P2 − LP4)

Z← Alg. 2 with A =
(
K kerP4

)
,B = C−1P4K and C = It

z← first column of Z
if Cz ∈

(
P4 ·K P4z

)
then

A← It	P4 ·
(
K z

)
else
a← (C− P4)z

A←
(
It	

(
P4K P4z a

)
a
)

end if
L ′R ←

(
P4z P4K A

)
L ′L ←

(
(P2 − LP4)z F

)
, where F is a zero filled matrix such that L ′L has the same number

of columns as L ′R
return L+ L ′L · L ′−1R

6.6.3 Example

To illustrate Algorithm 5, we continue the example of Section 6.5.3, and the matrix L
that we found. We have:

K =


1 .

. 1

. .

. .

 and C =


. 1 . 1

1 . . .

. 1 1 .

1 1 . .

 .

Using Algorithm 2, we get

Z = z =


.

.

1

.

 .
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As Cz =


.

.

1

.

 is not included in
(
P4K P4z

)
=


1 . .

. 1 .

1 . .

. . 1

, we compute A as a

complement of
(
P4K P4z

)
that contains a =


1

.

.

.

:

A =

〈
1

.

.

.


〉

.

Now, we compute L ′, using:

L ′R =


1 . 1 1

. 1 . .

1 . 1 .

. 1 1 .

 , L ′L =

 . . . .

. . . .

1 . . .

 ,

and

L ′ =

. . . .

. . . .

. 1 1 1

 .

Finally, we get the new decomposition, using, as usual, Equation (70):

P =



1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

. 1 . . 1 . .

. . . . . 1 .

. . 1 1. . . 1





. 1 1 1 1 . .

1 . . . . 1 1

. 1 1 . . 1 1

1 1 . . . 1 1

. . . . . . 1

. . . . . 1 .

. . . . 1 1 .





1 . . . . . .

. 1 . . . . .

. . 1 . . . .

. . . 1 . . .

. . . . 1 . .

. . . 1 . 1 .

. . . . . . 1


.

As expected, the left off-diagonal rank has increased by one, while the right one has
decreased by one. The two different decompositions that we now have for P cover all
the possible tradeoffs that minimize the off-diagonal ranks.

6.7 conclusion

The problem of implementing streaming linear permutations in Chapter 2 has led us
to introduce a novel block matrix decomposition that generalizes the classical block-
LU factorization, and decomposes a 2×2-blocked invertible matrix into a product
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of three matrices: lower block unitriangular, upper block triangular, and lower block
unitriangular matrix, such that the sum of the off-diagonal ranks are minimal. We
provided an algorithm that computes an optimal solution with an asympotic number
of operations cubic in the matrix size. We note that this decomposition works beyond
F2, and we implemented the algorithm for other finite fields, for rational numbers, for
Gaussian rational numbers and for exact real arithmetic for validation. For a floating
point implementation however, numerical issues may arise.





7
C H A R A C T E R I Z I N G A N D E N U M E R AT I N G WA L S H - H A D A M A R D
T R A N S F O R M A L G O R I T H M S

In this chapter, available in [70], we provide a proof of Theorem 3 that enumerates
the algorithms for computing a WHT that consist of a network of stages of butterflies
(I2n−1 ⊗H2) interleaved by linear permutations.

7.1 notations

We introduce the following notations in this chapter to improve the readability of the
different proofs.

Sequence of linear permutations. We consider a sequence P of n + 1 invertible
n×n bit-matrices

P = (P0,P1, . . . ,Pn),

and the computation, i.e., associated butterfly network

W(P) =π(P0) · (I2n−1 ⊗DFT2) · π(P1) · (I2n−1 ⊗DFT2) . . .

π(Pn−1) · (I2n−1 ⊗DFT2) · π(Pn).

Note that we do not assume a priori that P is such that W(P) = H2n . In fact, we
denote this subset, the set of DFT2-based linear fast WHT algorithms with P:

P = {P = (P0,P1, . . . ,Pn) with Pi ∈ GLn(F2) |W(P) = H2n} .

Product of matrices. The product of the matrices Pi,Pi+1, · · · ,Pj−1,Pj (a subse-
quence of P) appears multiple times in this chapter, and we denote it therefore with
Pi:j:

Pi:j =

j∏
k=i

Pk.

For convenience, we extend this notation by defining Pi:j = In if j < i.
Spreading matrix. Similarly, the following matrix X is recurring:

X =
(
P0:n−11b P0:n−21b · · · P0:11b P01b

)
. (71)

Here, 1b =
(
0 . . . 0 1

)T
. Thus, X is obtained by concatenating the rightmost

columns of the matrices P0:n−1, . . . ,P0. We will refer to this matrix as the spreading
matrix, as we will see that its invertibility is a necessary and sufficient condition for
W(P) to have no zero elements1.

1 It can be shown that a row of W(P) contains at most 2rankX non-zero elements.
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7.2 characterization of wht algorithms

A naïve approach to check if P ∈ P would compute W(P) and compare it against H2n .
Therefore, it would perform 2n + 1 multiplications of 2n × 2n matrices, and would
have a complexity in O(n · 23n) arithmetic operations. Our objective is to derive an
equivalent set of conditions that can be checked with a polynomial complexity.

Lemma 12 provides a necessary and sufficient set of conditions on a sequence of
linear permutations such that the corresponding algorithm computes a WHT. A proof
of this lemma is given in Section 7.4.

Lemma 12. P ∈ P if and only if the following conditions are satisfied:

• The product of the matrices satisfies

P0:n = XXT . (72)

• The rows of the inverse of the spreading matrix are the last rows of the matrices
P−10 , . . . ,P−10:n−1:

X−1 =
(
P−T0:n−11b P−T0:n−21b . . . P−T0:11b P−T0 1b

)T
. (73)

This set of conditions is minimal: there are counterexamples that do not satisfy one condition,
while satisfying the other.

Cost. With this set of conditions, checking if a given sequence P corresponds to a
WHT requires O(n4) arithmetic operations.

7.3 other transforms

We consider here linearly permuted fast algorithms that compute the unscaled and
naturally ordered WHT. We briefly discuss other WHT variants.

Walsh transform. The sequency ordered version, represented by Walsh matrix, only
differs by a bit-reversal permutation of its outputs. All the results obtained here can
be used for the Walsh matrix, after multiplying P0 by Jn on the left. Particularly, the
number of DFT2-based linear fast Walsh transforms is the same as for the WHT.

Orthogonal WHT. The WHT can be made orthogonal by scaling it by a factor of
2−n/2. Algorithms performing this transform can be obtained with our technique by
using the orthogonal DFT2, i.e. each butterfly is scaled by a factor of 1/

√
2.

7.4 proof of lemma 12

In this section, we provide a proof of Lemma 12. The main idea of this proof is in
deriving a general expression of W(P), assuming only that W(P) has its first row and
its first column filled with 1s (Lemma 16). Then, we match this expression with the
definition of the WHT to derive necessary and sufficient conditions for an algorithm
to compute a WHT. Before that, in Lemma 13, we derive some consequences of the in-
vertibility of the spreading matrix X, particularly on the non-zero elements ofW(P). In
Lemma 14, we provide a necessary and sufficient condition for W(P) to have a 1-filled
first row and column. We begin by defining concepts that will be used throughout this
section.
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Stages of an algorithm. We will refer to the stage k as an array of DFT2 composed
with the linear permutation associated with Pk: (I2n−1 ⊗DFT2)π(Pk). We call the right-
most stage of an algorithm the stage n, and stage k is to the left of stage k+ 1. We
denote with Wk(P) the matrix corresponding to the output on the left of stage k, i.e.,

Wk(P) = (I2n−1 ⊗DFT2)π(Pk) . . . (I2n−1 ⊗DFT2)π(Pn).

As a consequence, W(P) = π(P0)W1(P). For practical reasons, we extend this defini-
tion for k = n+ 1 by considering that Wn+1(P) = In.

Outputs depending on input i on the left of stage k. For 0 6 i < 2n, we denote
with Dk(i) the set of the outputs of the kth stage of the algorithm that depend on the
ith input:

Dk(i) = {jb |Wk(P)[j, i] 6= 0} ⊆ Fn2 .

The dependency of the whole algorithm on the input i is denoted with D(i):

D(i) = {jb |W(P)[j, i] 6= 0} .

Similarly, we denote with D+
k (i) (resp. D−

k (i)) the set of the indices of the outputs for
which

D+
k (i) = {jb |Wk(P)[j, i] = 1} , and D−

k (i) = {jb |Wk(P)[j, i] = −1} .

7.4.1 Invertibility of the spreading matrix

In the following lemma, we justify the name “spreading matrix” that we use for X, by
showing that its invertibility conditions the “spread” of non-zero elements through
the rows of W(P), and provide some other consequences we will use later.

Lemma 13. All the outputs of the algorithm depend on the first input, i.e. D(0) = Fn2 if and
only if the spreading matrix X is invertible. In this case, for every 0 6 i < 2n and 1 6 k 6 n:

• The set of dependency at the kth stage on the input i is

Dk(i) = (PkDk+1(i))∪ (PkDk+1(i) + 1b). (74)

• The non-zero elements of Wk(P) are either 1 or −1:

Dk(i) = D+
k (i)∪D−

k (i). (75)

• The kth stage modifies the set of dependencies such that:

D+
k (i) =(PkD

+
k+1(i) + 1b)∪ {jb ∈ PkD+

k+1(i) | j
T
b1b = 0}∪

{jb ∈ PkD−
k+1(i) | j

T
b1b = 1}.

(76)

Proof. First, we assume that D(0) = Fn2 , and show that X is invertible. For a given j,
the two outputs jb and jb + 1b of a DFT2 may have a dependency on the first input
only if at least one of the two signals jb and jb + 1b that arrive on this DFT2 depends
on that input. Therefore, we have

Dk(0) ⊆ PkDk+1(0)∪ (PkDk+1(0) + 1b).
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We now prove by induction that

Dk(0) ⊆ 〈1b,Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉.

We already have that Dn+1(0) = {0b}. Assuming that the result holds at rank k+ 1,
we have:

Dk(0) ⊆ PkDk+1(0)∪ (PkDk+1(0) + 1b)
⊆ Pk〈1b,Pk+11b, . . . ,Pk+1:n−11b〉∪

(Pk〈1b,Pk+11b, . . . ,Pk+1:n−11b〉+ 1b)
= 〈Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉∪

(〈Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉+ 1b)
= 〈1b,Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉.

Which yields the result. As a consequence, we have

D(0) = P0D1(0) ⊆ P0〈1b,P11b, . . . ,P1:n−11b〉 = imX.

As D(0) = Fn2 , we have Fn2 ⊆ imX, and X is therefore invertible.
Conversely, we now assume that X is invertible, and prove by induction that the set

of outputs after stage k that depend on the ith input is

Dk(i) = Pk:nib + 〈1b,Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉. (77)

We already have Dn+1(i) = {ib}. Assuming (77) for k+ 1, and considering an element

jb ∈ PkDk+1(i) = Pk:nib + 〈Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉,

we have jb + Pk:nib ∈ 〈Pk1b, . . . ,Pk:n−11b〉. As X is invertible, so is the matrix

P−10:k−1X =
(
Pk:n−11b · · · Pk1b 1b P−1k−11b · · · P−11:k−11b

)
.

Its columns are linearly independent, and particularly,

1b /∈ 〈Pk1b, . . . ,Pk:n−11b〉.

Therefore, jb + Pk:nib + 1b /∈ 〈Pk1b, . . . ,Pk:n−11b〉, thus jb + 1b /∈ PkDk+1(i). This
means that if a signal jb that arrives on a DFT2 depends on an input i (jb ∈ PkDk+1(i)),
the other signal (jb + 1b) doesn’t. As the output of a DFT2 is the sum (resp. the differ-
ence) of these, and that an input i never appears on both terms of this operation, the
dependency of both outputs on inputs is the union of the dependencies of the signals
that arrive to this DFT2. This yields (74), and a direct computation shows that

Dk(i) = PkDk+1(i)∪ (PkDk+1(i) + 1b)
= (Pk:nib + 〈Pk1b, . . . ,Pk:n−11b〉)∪

(Pk:nib + 〈Pk1b, . . . ,Pk:n−11b〉+ 1b)
= Pk:nib + 〈1b,Pk1b, . . . ,Pk:n−11b〉.

This yields (77), and D(0) = Fn2 as a direct consequence. To be more precise, if (75) is
satisfied at rank k+ 1, a signal jb depending on the input i that arrives on the DFT2
array of the kth stage is in one of these cases:
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• jb ∈ PkD+
k+1(i), and j arrives on top of the DFT2 (j is even, i.e. jTb1b = 0). In this

case, both outputs of this DFT2 depend “positively” on i: {jb, jb + 1b} ⊆ D+
k (i).

• jb ∈ PkD−
k+1(i), and j arrives on top of the DFT2 (j is even, i.e. jTb1b = 0). In this

case, both outputs of this DFT2 depend “negatively” on i: {jb, jb + 1b} ⊆ D−
k (i).

• jb ∈ PkD+
k+1(i), and j arrives on the bottom of the DFT2 (j is odd, i.e. jTb1b = 1).

In this case, the top output depends “positively” on i: jb + 1b ∈ D+
k (i), and the

bottom output “negatively”: jb ∈ D−
k (i).

• jb ∈ PkD−
k+1(i), and j arrives on the bottom of the DFT2 (j is odd, i.e. jTb1b = 1).

In this case, the top output depends “negatively” on i: jb + 1b ∈ D−
k (i), and the

bottom output “positively”: jb ∈ D+
k (i).

This yields (76) and (75) at rank k. As we have as well D+
n+1(i)∪D−

n+1(i) = {ib}∪ ∅ =
Dn+1(i), (75) holds for all k.

7.4.2 About condition (73)

As mentioned earlier, we will derive a general expression for W(P), assuming that it
has its first row and columns filled with 1s. In the following lemma, we provide an
equivalent condition for this assumption.

Lemma 14. The following propositions are equivalent:

• The first row and the first column of W(P) contain only 1s:

D+(0) = Fn2 , and (78)

0b ∈ D+(i), for 0 6 i < 2n. (79)

• The spreading matrix satisfies (73).

• No sequential product Pk:` of the central matrices has a 1 in the bottom right corner, and
the same holds for the inverse of Pk:`:

1TbPk:`1b =0, for 0 < k 6 ` < n, and (80)

1TbP
−1
k:`1b =0, for 0 < k 6 ` < n. (81)

Proof. We start by showing the equivalence between the second and the third proposi-
tion. We consider the canonical basis (e1, . . . , en) of Fn2 . We have, for all 0 < k,k ′ 6 n,

eTk

(
P−T0:n−11b P−T0:n−21b . . . P−T0:11b P−T0 1b

)T
Xek ′

=(P−T0:n−k1b)
TP0:n−k ′1b

=1TbP
−1
1:n−kP1:n−k ′1b

=


1 if k = k ′, or

1TbPn−k−1:n−k ′1b if k > k ′, or

1TbP
−1
n−k ′−1:n−k1b if k ′ > k.

The nullity of the two last cases is equivalent to (73) on one side, and (80) and (81) on
the other side.
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We now consider the first proposition. We assume first that (78) holds, and will
show that it implies (80). As Fn2 = D+(0) ⊆ D(0), we can use the results of Lemma 13.
Using (74), (75) and (76), we have

D−
k (i) =Dk(i) \D

+
k (i)

= (PkDk+1(i)∪ (PkDk+1(i) + 1b)) \(
(PkD

+
k+1(i) + 1b)∪ {jb ∈ PkD+

k+1(i) | j
T
b1b = 0}∪

{jb ∈ PkD−
k+1(i) | j

T
b1b = 1}

)
⊇ (PkDk+1(i) + 1b)) \

(
PkD

+
k+1(i) + 1b

)
=PkD

−
k+1(i) + 1b

Therefore, the number of outputs depending “negatively” on a given input i can only
increase within a stage:

|D−
k (i)| > |D−

k+1(i)|.

Particularly, for the first input, this means that |D−(0)| = |D−
1 (0)| > · · · > |D−

n(0)|.
As D−(0) = ∅, we have D+

k (0) = Dk(0) for all k. Using again (74), (75) and (76), we
have, for all k,

∅ =D−
k (0)

= (PkDk+1(0)∪ (PkDk+1(0) + 1b)) \(
(PkD

+
k+1(0) + 1b)∪ {jb ∈ PkD+

k+1(0) | j
T
b1b = 0}

)
={jb ∈ PkD+

k+1(0) | j
T
b1b = 1},

Therefore, jTb1b = 0 for all k and all jb ∈ PkD+
k+1(0) = PkDk+1(0) = 〈Pk1b,PkPk+11b,

. . . ,Pk:n−11b〉, which yields (80).
We now consider that (79) is satisfied. This means that (78) holds for W(P)T =

W((P−1n , . . . ,P−10 )), and the same computation yields (81).
Finally, we suppose that (80) and (81) hold (and therefore (73), which allows to use

Lemma 13). For i = 0, (76) becomes

D+
k (0) =(PkD

+
k+1(0) + 1b)∪ {jb ∈ PkD+

k+1(0) | j
T
b1b = 0}∪

{jb ∈ PkD−
k+1(0) | j

T
b1b = 1}.

However, (80) yields that jTb1b = 0 in all cases. Therefore, we have

D+
k (0) = (PkD

+
k+1(0) + 1b)∪ {jb ∈ PkD+

k+1(0)},

and a direct induction yields (78). The same argument with (81) and W(P)T yields
(79).

The following result is useless in the current form of the proof, but it is funny, and
nobody will read this part anyway...

Lemma 15. An n-ary quadratic form over F2 is linear if and only if the associated matrix is
symmetric:

ib 7→ iTbSib linear ⇔ S symmetric.
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Proof. We consider the canonical basis (e0, . . . , en−1) of Fn2 , and a vector x =
∑
i λiei

of this space. If S = (Si,j) is symmetric, then we have

xTSx =
∑
i,j

λiλjSi,j

=
∑
i

λ2iSi,i +
∑
i>j

λiλjSi,j +
∑
i<j

λiλjSi,j

=
∑
i

λiSi,i +
∑
i>j

λiλjSi,j +
∑
i<j

λiλjSj,i

=
∑
i

λiSi,i

= Diag(S)Tx.

Conversely, if there exists v ∈ Fn2 such that for all x ∈ Fn2 , xTSx = vTx, then we
have, for all 0 6 i, j < n

0 = (ei + ej)
TS(ei + ej) + v

T (ei + ej)

= eTi Sej + e
T
j Sei + e

T
i Sei + e

T
j Sej + v

Tei + v
Tej

= Si,j + Sj,i + v
Tei + v

Tej + v
Tei + v

Tej

= Si,j + Sj,i.

7.4.3 General expression of W(P)

When X is invertible, we have D(i) = D+(i)∪D−(i), which means thatW(P) is entirely
determined by D+, for which we derive an expression in the following lemma.

Lemma 16. If the spreading matrix satisfies (73), then

D+(i) = ker
(
iTbP

T
0:n(XX

T )−1
)
=
{
jb | iTbP

T
0:n(XX

T )−1jb = 0
}

. (82)

Proof. We assume that X satisfies (73). As X is invertible, the results of Lemma 13 and
14 can be used. Additionally, for 1 6 k 6 n+ 1, the vectors {1b,Pk1b,Pk:k+11b, . . . ,
Pk:n−11b} are linearly independent (as columns of the invertible matrix P−10:k−1X), and
we define on the (n − k + 1)-dimensional space spawn by these vectors the linear
mapping fk as follows:

1b 7→ PTk:n1b

Pk1b 7→ PTk+1:n1b
...

...
...

Pk:n−11b 7→ PTn1b.

This mapping satisfies, for 1 6 k 6 n, and for all x in the domain of fk+1,

fk(Pkx) = fk+1(x). (83)
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Additionally, for k = 1, this mapping is defined over Fn2 , and satisfies, for all 0 6 x <

2n,

f1(xb) =
(
PTn1b PTn−1:n1b · · · PT1:n1b

)
·(

P1:n−11b P1:n−21b · · · 1b
)−1

xb

= PT0:n

(
P−T0:n−11b P−T0:n−21b · · · P−T0 1b

)
·(

P0:n−11b P0:n−21b · · · P01b
)−1

P0xb

= PT0:n(XX
T )−1P0xb.

We define as well the vector sk:

sk = 1b + Pk1b + Pk:k+11b + · · ·+ Pk:n−11b.

We will now prove by induction that, for 1 6 k 6 n+ 1,

D+
k (i) = {jb ∈ Dk(i) | i

T
bfk(jb + Pk:nib + sk) = 0}. (84)

We have, for k = n+ 1,

D+
n+1(i) = {ib}

= {jb ∈ Dn+1(i) | i
T
bfn+1(jb + Inib + 0b) = 0}.

If we assume that (84) is satisfied at rank k + 1, i.e D+
k+1(i) = {jb ∈ Dk+1(i) |

iTbfk+1(jb + Pk+1:nib + sk+1) = 0}, we have, using (83),

PkD
+
k+1(i) =

{
jb ∈ PkDk+1(i) |
iTbfk+1(P

−1
k (jb + Pk:nib + Pksk+1)) = 0

}
= {jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + Pksk+1) = 0}.

Using (75), we directly get

PkD
−
k+1(i) = {jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + Pksk+1) = 1}.

We can now compute D+
k using (76):

D+
k (i) = (PkD

+
k+1(i) + 1b)∪ {jb ∈ PkD+

k+1(i) | j
T
b1b = 0}∪

{jb ∈ PkD−
k+1(i) | j

T
b1b = 1}

= (PkD
+
k+1(i) + 1b)∪

{jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + Pksk+1) + jTb1b = 0}.

The term jTb1b that appears for

jb ∈ PkDk+1(i) = Pk:nib + 〈Pk1b,Pk:k+11b, . . . ,Pk:n−11b〉
satisfies, using (80), jTb1b = iTbP

T
k:n1b = iTbfk(1b). Therefore:

D+
k (i) = (PkD

+
k+1(i) + 1b)∪

{jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + Pksk+1) + iTbfk(1b) = 0}
= (PkD

+
k+1(i) + 1b)∪

{jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + sk) = 0}
= {jb ∈ PkDk+1(i) + 1b | iTbfk(jb + Pk:nib + sk) = 0}∪

{jb ∈ PkDk+1(i) | iTbfk(jb + Pk:nib + sk) = 0}
= {jb ∈ Dk(i) | i

T
bfk(jb + Pk:nib + sk) = 0},
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which yields the result.
We can now provide a first expression for D+, using (83):

D+(i) = P0D
+
1 (i)

= P0{jb | iTbf1(jb + P1:nib + s1) = 0}

= P0{jb | iTbP
T
0:n(XX

T )−1(P0jb + P0:nib + P0s1) = 0}

= {jb | iTbP
T
0:n(XX

T )−1(jb + P0:nib + P0s1) = 0}.

The last step consists in showing that the mapping

g : ib 7→ iTbP
T
0:n(XX

T )−1(P0:nib + P0s1)

is null. We consider the canonical basis (e1, . . . , en) of Fn2 , and a vector x =∑
i λiP

−1
0:nXei of this space. A direct computation yields:

g(x) =xTPT0:n(XX
T )−1(P0:nx+ P0s1)

=(X−1P0:nx)
TX−1(P0:nx+ P0s1)

=

(
X−1P0:n

∑
i

λiP
−1
0:nXei

)T
X−1 ·

P0:n∑
j

λjP
−1
0:nXej +

∑
k

Xek


=
∑
i

λie
T
i

∑
j

(λj + 1)ej

=
∑
i,j

λi(λj + 1)e
T
i ej

=
∑
i=j

λi(λj + 1)e
T
i ej +

∑
i 6=j

λi(λj + 1)e
T
i ej

=0.

7.4.4 Proof of Lemma 12

The proof of Lemma 12 is now straightforward.
If P ∈ P, thenW(P) has its first column and row filled up with 1s. Lemma 14 ensures

(73), and we can use Lemma 16. Identifying (82) with the definition (25) of H2n yields
that PT0:n = XXT , i.e. that (72) is satisfied.

Conversely, if (72) and (73) are satisfied, W(P) = H2n is a direct consequence of
Lemma 16.

7.5 proof of theorem 3

We first assume that (P0, . . . ,Pn) ∈ P, and construct a set of matrices satisfying (31).
We define B = X−1, and, by induction, the matrices

Q̃i =

B−1 · P0, for i = 1,

C−1
n · Q̃i−1 · Pi−1, for 1 < i 6 n.

By construction, these matrices satisfy, for 0 < i 6 n,

Q̃i = C
1−i
n X−1P0:i−1.
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Using (72), we get:

Pi =


B · Q̃1, for i = 0,

Q̃−1
i ·Cn · Q̃i+1, for 0 < i < n,

Q̃−1
n ·Cn · B̃T , for i = n.

The last step consists in showing that, for 0 < i 6 n, there exists a matrix Qi ∈

GLn−1(F2) such that Q̃i =

(
Qi

1

)
, or equivalently, that Q̃i1b = Q̃Ti 1b = 1b:

Q̃i1b = C1−in X−1P0:i−11b

= C1−in

(
P0:n−11b . . . P0:11b P01b

)−1
P0:i−11b

= 1b.

A similar computation, using (73), shows that Q̃Ti 1b = 1b.
Conversely, if a set of matrices satisfy (31), a direct computation (with [33]) shows

that (72) and (73) are satisfied. Thus. P ∈ P.
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C O N C L U S I O N A N D F U T U R E W O R K

“Optimal” is often misused as a synonym for “good”, or “best so far”. But claiming
optimality goes beyond the superlative; one has to show that no better solution can
ever be found. In this dissertation, we demonstrated the optimality of our solutions in
two different ways:

• For streaming permutations, we defined in Chapter 2 a novel metric, the rout-
ing entropy. Using a proof à la Shannon, we showed that this measure is in fact
a lower bound on the number of multiplexers that an implementation of this
streaming permutation contains (Theorem 1). Then, in the particular case of lin-
ear permutations, we proposed a systematic method to design an implementation
matching this bound, thus characterizing exactly their routing complexity. Simi-
larly, we described a second architecture capable of minimizing both the latency
and the number of RAM banks used, while using the minimal number of multi-
plexers with respect to this constraint, and described precisely the permutations
for which all these measures could simultaneously be minimized. The method
we used involved a novel matrix factorization algorithm (Chapter 6), similar to
a block LU decomposition with a minimization of the ranks of sub-diagonal
matrices.

• For streaming Walsh-Hadamard transforms, we fully characterized all possible
linearly permuted algorithms in Chapter 7 (Theorem 3), and employed in Chap-
ter 4 advanced search techniques to find in this space those that have the best
implementation cost.

We employed these theoritical advances in very concrete applications. Namely:

• We described in Chapter 3 a method to design a datapath capable of realizing
different fixed streamed linear permutations. Taking a folded Pease fast Fourier
transform as an example, we showed that “fusing” the internal shuffle and the
bit reversal yields a significant reduction in terms of RAM consumption. This
new architecture offers novel Pareto-optimal tradeoffs between performance and
logic/memory across an entire design space of FFTs.

• We proposed in Chapter 5 a generator for streaming FFTs, WHTs and sorting
networks. This generator follows a principled design using the state-of-the-art
language features in Scala, and employs three embedded DSLs and the concept
of staging to enable flexibility and automatic optimizations on different levels.

In addition to these results, this research produced an artifact available at [67] and
[66].

Future work. The research presented in this dissertation satisfies the goal we pur-
sued, providing optimality results in streaming permutations and transforms. We give
a list of potential future directions:

• Most signal processing algorithms use linear permutations exclusively. However,
many permutations are not linear, and in this case, the bound provided in Theo-
rem 1 may not be sharp. A natural question arising would be to know whether

125
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an implementation matching this bound exists, even for general streaming per-
mutations, or if a higher bound can be found.

• For the Walsh-Hadamard transform, our results for small sizes strongly indi-
cate that there is a class of yet undiscovered, and non-obvious algorithms with
reduced RAM and logic requirements in streaming implementation. However,
the space for bigger WHTs is too large to be exhaustively searched. A challenge
would consist in extrapolating the optimal solutions found for small sizes to all
sizes.

• The idea behind the characterization of the space of WHT algorithms is in prin-
ciple applicable to other regular algorithms. Particularly, the discrete Fourier
transform would be a good candidate for such an exploration.

• The principles we used to develop our generator can be used for other appli-
cations. An obvious line for future work is to expand our generator to other
domains.
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