
Research Collection

Master Thesis

Automatic Generation of Hardware Designs for Matrix-Matrix
Multiplication

Author(s): 
Serre, François

Publication Date: 
2012

Permanent Link: 
https://doi.org/10.3929/ethz-a-007636137

Rights / License: 
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

https://doi.org/10.3929/ethz-a-007636137
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


ETH Zürich, Department of Computer Science

Master Thesis

Automatic Generation of Hardware
Designs for Matrix-Matrix

Multiplication

May 1, 2012

Author:

François Serre

Supervisors:

Pr. M.Püschel

Dr. M.Zuluaga



Abstract

Matrix-Matrix Multiplication (MMM) is a key computational kernel in scienti�c and
engineering applications. Therefore, di�erent implementations of this operation have
been designed for FPGAs. However, it is hard to �nd, given a particular set of constraints
(maximal number of slices, minimum frequency), the most appropriate design.
This thesis proposes the Operator Language for Schedules (OLS) to describe hardware

designs that can perform MMM on arbitrarily-sized matrices. Algorithmic and imple-
mentation strategies such as blocking and reuse are represented as a set of rewriting rules
that are recursively applied to OLS expressions. Finally, a compiler was built to translate
a �nal OLS expression into Verilog code.
The di�erent rewriting-rules that can be recursively applied, given the size requirements

for MMM, give rise to large design space. Every design alternative, for a subset of matrix
sizes, was synthesized and routed for our target FPGA platform and precise cost and per-
formance metrics were stored in a database. Designers can later visualize the alternatives
in our database and choose the design that suits the goals and constraints of the target
system.

Résumé

La multiplication de matrices (MMM) est une opération omniprésente en sciences et en
ingénierie. Il existe de ce fait de nombreuses implémentations pour FPGAs. Néanmoins,
étant donné un ensemble de contraintes (nombre maximal de cellules logiques de chaque
type à occuper, fréquence minimale), il est di�cile de trouver la meilleure implémentation
correspondante.
Cette thèse propose un langage pour décrire un design pour FPGA au travers d'une

formule mathématique qui opère sur une matrice, qui elle-même représente un �ux de
données. Les di�érentes façons d'e�ectuer la multiplication par blocs, en réutilisant pour
ce faire ou non le même module, sont décrites par un ensemble de règles de réécriture qui
sont appliquées de manière récursive sur une formule de départ. La formule obtenue est
ensuite traduite en Verilog.
L'espace des di�érentes implémentations de MMM ainsi généré est synthétisé et routé,

puis la fréquence maximale et le nombre de cellules occupées de chaque sorte sont en-
registrées dans une base de données. L'utilisateur n'a plus qu'à accéder à cette base
au travers d'une interface web pour choisir l'implémentation qui convient le mieux à ses
contraintes.
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1 Introduction

1.1 Motivation

A lot of e�ort have been devoted to improving the performance of matrix-matrix multipli-
cation (MMM) algorithms, as it is one of the most important operations in digital signal
processing. Because of its structure and its high regularity, it is possible to parallelize
MMM in many di�erent ways. Therefore, for a given problem (size of the input matri-
ces, platform), a lot of di�erent implementations are possible, and due to the complexity
of today's computers (Multi-core, SIMD instructions, cache hierarchy), �nding the most
appropriate one is not an obvious issue [2],[1].
This thesis focuses on hardware implementations of MMM to be used in customized

platforms such as �eld-programmable gate arrays (FPGA) or application-speci�c inte-
grated circuits (ASIC). In these case, the problem is even more complex as the speed is
not the only constraint. In fact, di�erent MMM implementations will consume a di�erent
amount of hardware resources.
Another issue is that the matrix multiplier may have to be synchronous with some

other processing elements. In this case, it is necessary to choose the implementation that
has the best performance at a given frequency. In fact, the highest throughput may not
be obtained with the same design depending on whether or not they can operate at their
maximum frequency. And of course, if the implementation is not able to operate at the
given frequency, it will slow down the whole system.
The hardware resources that a design requires, and its maximum frequency are de-

termined after complex (synthesis) and non-deterministic (place and route) operations.
Therefore, it is hard to �nd the best MMM implementation given those constraints.

1.2 Previous work

1.2.1 MMM Hardware Implementations

In [3] [11], a Matrix Multiplication algorithm is explained, but focuses mainly on an
e�cient implementation of an Floating Processing Unit. In our case, we consider 16 bits
�xed-point operations. Another matrix implementation can be found in [5].
[12] describes an e�cient way of implementing sparse matrix multiplication.
In its Linear Algebra Toolkit [10], Xilinx developped a tool able to generate a MMM

for FPGAs. The user can set the dimentions of the input matrices, and a folding factor.
However, this tool proposes only folding through rows, and generates a netlist that is only
working with some Xilinx products.

1.2.2 Languages to describe an Algorithm

Spiral [7], [6] is a framework for the automatic generation of software and hardware
libraries. It uses an internal language, SPL, and a rewriting rule system to describe linear

1



1 Introduction

algorithms from a high level. Operator Language [4] (OL) extends SPL to the non-linear
domain. SPL and OL are high level languages which allow it to work for a large variety
of platforms. Divide-and-conquer algorithms are described as breakdown rules that are
recursively applied on a formula, the initial formula being the mathematical function
to implement, or kernel. These formulas are composed of operators, n-ary functions
that work on vectors. The most interesting element of these languages is the Kronecker
product, which allows to identify easily the operations that are performed several times.
When the formula obtained is fully expanded, a tagging operation takes place to assign
the di�erent parts of the formula to a speci�c platform element. However, an important
post-processing is needed to obtain the �nal output, especially for hardware.

1.3 Thesis Overview

This thesis proposes a method to automatically generate a big variety of implementations
for a given MMM problem. We only focus on the case where the whole input matrices are
fed during one cycle, and the output matrix is returned during one cycle too. Those im-
plementations are then synthesised and routed to �ll a database with their caracteristics.
Then, when a user wants an MMM design with given constraints, he can pick directly the
best one from this database.
To describe the algorithms that our generator will produce, we will use the same for-

malism as the one described in [4]. However, to simplify the post-processing required on
the �nal formulas, some new elements are added to the language. In the original OL, the
operators work on vectors. The position of each element in these vectors represent an
abstract position in the data�ow. In this thesis, a data�ow is represented by a matrix.
The row of an element represents its position in an array, and its column represents the
time (i.e. clock cycle) at which it is available. We also introduce two classes of operators:

• Combinational operators: outputs at a given cycle depend only on the current
inputs. All of the operators introduced in [4] fall in this category.

• Sequential operators: outputs at a given cycle may depend on any previous input
and/or the cycle number.

Using these two classes of operator, it is possible to describe all the circuit elements that
are needed to perform MMM. Therefore, a terminated formula directly maps to circuitry,
and the only post-processing needed is a translation of this formula into verilog.
To compute an MMM, we block it until we have only scalar multiplications and scalar

additions. To do so, a small set of rewriting rules is used, to block the matrix multiplication
in the three directions (vertically, horizontally and in depth), either parallely or serially.
In the parallel case, all blocks are computed at the same time by a piece of circuitry
implemented several times. In the serial case, all blocks are computed one after the other
by the same piece of circuitry. The sequence of rules that we use de�nes a design family,
and the set of parameters for these rules de�nes a design.
For a given problem (size of input matrices), the generator produces the verilog code

that corresponds to a set of designs that are meant to cover a wide range of tradeo�s
between cost and performance. This code is then synthesized in a distributed way, and
the result of this synthesis (maximum frequency, area requirements) is collected in a
central database. The user can �nally choose the best design given his contraints on a
web interface.

2



1.4 Notations

1.4 Notations

In this thesis, the tensor product (produces a p+q order tensor) is noted � to di�erenciate
it from the Kronecker product ⊗ (produces a max(p, q) order tensor). Otherwise, this
document uses the notations used in [9]:

Einstein notation When an index variable appears twice or more times in a term, it
means that it has to be summed over all its possible values:

ci = ai,j,kbj,k means ci =
∑
j

∑
k

ai,j,kbj,k

Order of a Tensor A tensor is underlined as many times as its order. A tensor which
order is not speci�ed is not underlined. Every indices will be at bottom.

1.5 Organization

This thesis is organized as follows. Chapter 2 introduces formally the formula language
that our generator uses. Next, Chapter 3 describes how this language is used in the case
of MMM and with Verilog. Then, Chapter 4 shows the results that our generator can get
on a particular platform. Lastly, Chapter 5 presents concluding remarks.

3





2 Operator Language for Schedules

The Operator Language (OL), de�ned in [4], allows to describe the rules that, from a nu-
merical kernel description, allow to derive an algorithm formula. However, this algorithm
is still described at a high level, and heavy post-processing is needed to eliminate some
remaining degrees of freedom (temporal reuse of some blocks, synchronous issues) before
generating the �nal output. Plus, the algorithm is not aware of some timing issues: some
data might not be available at all times.
The goal of this chapter is to extend the operator language (OL) so that the algorithms

can easily deal with the temporal dimension. This extension is backward compatible
with all the operators - called combinational operators - from OL, but introduces a new
class of operators, the sequential operators, which can be used to describe sequential
logic (�ip/�ops, multiplexers, accumulators...). Furthermore, the post-processing step
that used to look for reused blocks to try to implement them sequentially is not needed
anymore, since combinational operators naturally work every cycle.
However, this extension requires some knowledge on tensors that was not needed for

OL (mainly the doubly contracted product). Therefore, a small reminder on tensors is
included.

2.1 A reminder on tensors

2.1.1 Tensor

De�nition

An n-order tensor T is a n-dimensional array1. We use the notation ti1,...,in to represent
its elements.

Examples

Table 2.1 lists the di�erent kinds of tensor that are used in this document.

1This is a very cheap de�nition, but we don't need more

n Notation Usual name Elements Equivalent in C

0 s ∈ C Scalar s double s;
1 v ∈ Ck Vector (v0, ..., vk−1) double v[k];
2 M ∈Mk,l(C) Matrix (mi,j)0≤i≤k−1,0≤j≤l−1 double M[k][l];

4 C (ci,j,k,l)i,j,k,l double C[a][b][c][d];

Table 2.1: Examples of order n tensors

5



2 Operator Language for Schedules

2.1.2 Canonical basis

The notation ei1�ei2� ...�ein represents the n-order tensor that contains a 1 at position
(i1, i2, ..., in), and zeroes elsewhere. It is easy to check that (ei1 � ... � ein)i1,...,in is an
orthonormal basis of the set of order n tensors2. Therefore, every tensor T can be rewritten
as:

T = ti1,...,inei1 � ...� ein

Examples

• The vector

1
0
3

 can be rewritten as e0 + 3e2.

• The matrix

[
1 0
2 5

]
can be rewritten as e0 � e0 + 2e1 � e0 + 5e1 � e1

2.1.3 Tensor Product

De�nition

If A is a p-order tensor, and B a q-order tensor, the tensor product A � B is the p + q
order tensor such that:

A�B = (ai1,...,ip × bip+1,...,ip+q)ei1 � ...� eip+q

Examples

• The tensor product of two vectors u = uiei and v = vjej is the matrix:

u� v = (ui × vj)ei � ej = u · tv

• The tensor product of two matrices M = mi,jei� ej and N = nk,lek� el is the order
4 tensor3:

M �N = (mi,j × nk,l)ei � ej � ek � el

• It is easy to check that the tensor product of an element of the canonical basis of
the p-order tensors and one of the canonical basis of the q-order tensors gives the
corresponding element of the canonical basis of the p+q-order tensors. This justi�es
à postérioris our notation ei1 � ...� ein for an element of the canonical basis.

2If we consider it as an hermitian vector space with the element-wise addition, the element-wise multi-

plication by a scalar, and the sum of the element-wise conjugated products as a scalar product.
3This makes the tensor product de�ned here di�erent from the Kronecker product used in OL. The last

takes two matrices, and outputs a bigger matrix. In this document, the tensor product is used to

clearly separate the temporal dimension from the "position" dimension.
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2.1 A reminder on tensors

2.1.4 Simply Contracted Product

De�nition

If A is a p-order tensor, and B a q-order tensor, the simply contracted product (aka
contracted product) A.B is the p+ q − 2-order tensor such that:

A.B = (ai1,...,ip−1,k × bk,ip+2,...,ip+q)ei1 � ...� eip−1 � eip+2 � ...� eip+q

In other words, the contracted product of two tensors works likewise the tensor product,
except that the last dimension of the �rst tensor is summed along the �rst dimension of
the second tensor4.

Examples

• The contracted product of two vectors u = uiei and v = vjej is the scalar:

u · v = uivi

In other words, the contracted product of two vectors is the canonical scalar product
of Rk.

• The contracted product of a matrix M = mi,jei � ej and a vector u = ukek is the

vector:
M · u = mi,jujei

This is the classical Matrix-Vector multiplication.

• The contracted product of two matrices M = mi,jei � ej and N = nk,lek � el is the
matrix:

M ·N = (mi,jnj,l)ei � el

This is the classical Matrix-Matrix multiplication.

2.1.5 Doubly Contracted Product

De�nition

If A is a p order tensor, and B a q order tensor, the doubly contracted product A : B is
the p+ q − 4 order tensor such that:

A : B = (ai1,...,ip−2,k,l × bl,k,ip+3,...,ip+q)ei1 � ...� eip−2 � eip+3 � ...� eip+q

In other words, the doubly contracted product of two tensors works similarly to the simply
contracted product, except that the last but one dimension of the �rst tensor is summed
along the second dimension of the second tensor5.

4The size of the last dimension of the �rst tensor must equal the size of the �rst dimension of the second

tensor!
5The size of the last dimension of the �rst tensor must equal the size of the �rst dimension of the second

tensor, AND the size of the one but last dimension of the �rst tensor must equal the size of the second

dimension of the second tensor!
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2 Operator Language for Schedules

Examples

• The doubly contracted product of two matrices M = mi,jei� ej and N = nk,lek� el
is the scalar:

M : N = mi,jnj,i = Tr(M ·N)

If M (and N) is square, then tM : N de�nes the classical scalar product onMk(R)

• If M is square, and if I is the identity matrix (I = ei � ei), we have:

M : I = mi,jδ
i
j = mi,i = Tr(M)

• The doubly contracted product of an order 4 tensor C = ci,j,k,lei � ej � ek � el and
a matrix M = mi,jei � ej is a matrix :

C :M = ci,j,k,lml,kei � ej

2.2 Schedules

The main di�erence between the original Operator Language and the language de�ned
here is the type of data the operators work on. The operators in OL work on vectors
such as viei. vi is the value contained at the index i. This index is an abstraction in the
sense that its de�nition is left to the user (memory address, value of a register at a given
time,...).
In SOL, operators work on schedules. A schedule is a matrix

s = si,tei � et

si,t is the value contained at the position i (this position can be a port, a bus, or a memory
address) at time t (typically, a clock cycle for synchronous hardware).

2.3 Operators

The operators are the elements that work on schedules (cf. Fig. 2.1).

0

1

3

4

6

7

5

2

3

0

8

11

4

1

10

7

9

6

cycles
cycles

P

Figure 2.1: An operator working on a data�ow
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2.3 Operators

2.3.1 Combinational Operators

A combinational operator is an operator for which the output at cycle t is a pure function
of its input at cycle t. This typically describes a combinational circuit. All operators
described in [4] enter in this category.

Linear combinational operators with arity (1, 1)

A linear combinational operator with arity (1, 1) can be represented by a matrix M(the

same as in the OL paper). The recipe to apply it on a schedule s is the same as for a

vector; a simply contracted product:

r =M · s

Examples

• The N ×N matrix

DFTN = e−
2iπ
N

(j−1)(k−1)ej � ek

is the discrete Fourier transform. Applying it on a N × T matrix will perform T
Fourier transforms (1 per cycle).

• We note:

ADD =
[
1 1

]
This typically describes an adder (adds two numbers every cycle, cf. Fig. 2.2).

+
Figure 2.2: Implementation of ADD

Other Combinational Operators

This de�nition naturally extends to non-linear and/or with non-trivial arity operator. For
instance, let B: CI × CI′ → CK be any operator. We de�ne its action on schedules:

B

(
s1, s2

)
= B

(
s1.et, s2.et

)
� et

9



2 Operator Language for Schedules

Examples

• We note MMMm,k,n the matrix multiplication that consumes two matrices and
produces one:

MMMm,k,n : Cmk × Ckn → Cmn; (A,B) 7→ AB

Applying it on two schedules mk × T and kn × T will perform T matrix multipli-
cations (1 per cycle). The output will be a mn× T schedule.

• We de�ne
MUL =MMM1,1,1

This typically describes a multiplier (multiply two numbers every cycle).

2.3.2 Sequential Operators

An operator that is not combinational is sequential.

Linear with arity (1, 1)

Sequential operators can access the time dimension. Therefore, linear sequential operators
with arity (1, 1) use doubly contracted product, and are order 4 tensors. Let's doubly
contract an order 4 tensor T = ti′,t′,t,iei′ � et′ � et � ei with a schedule s = si,tei � et:

T : s = ti′,t′,t,isi,tei′ � et′

The meaning of ti′,t′,t,i is clear: it is the contribution of the value of the input at time t
and at position i on the output at time t′ and position i′.

Examples

• We note Dc the operator:

Dc = ei � et+c � et � ei

Let's apply Dc on a schedule:

Dc : s = si,tei � et+c

The whole schedule has been delayed of c cycles. This typically describes a bu�er
of size c.

• Let k be a positive integer, and u a sequence in [[0; k − 1]]N Then, we denote:

MUXu = e0 � et � et � eu(t)

When this operator is applied to a schedule, it returns at cycle t the value contained
at position ut. This describes the behavior of a multiplexer controlled by a cycle
counter. As we only consider data-independent kernels, this is actually the only
kind of multiplexer that we can �nd(cf. Fig. 2.3).

• Let h be a positive integer. We denote:

Th = ei � eh×t � eh×t � ei

At cycle t, this operator returns its input if t is a multiple of h, and zeroes otherwise.

10



2.3 Operators

+1

Figure 2.3: Implementation of MUXu

Non Linear

This is the most general operator. It takes one or more schedules, and returns one or
more schedules.

Example MMMT,δ
m,k,n is the operator that multiplies a m × k and a k × n matrix with

a gap of T cycles, and a latency of T + δ cycles.

2.3.3 Composition

We denote A ◦B the composition of operators A and B (cf Fig. 2.4).

0
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cycles
cycles

P Q

Figure 2.4: Composition of two Operators

Linear operator with arity (1, 1) can easily be composed using the two kinds of con-
tracted products.
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2 Operator Language for Schedules

Two Linear Combinational Operators

As the simply contracted product is associative, we have:

A · (B · s) = (A ·B) · s

This means that the composition of two linear combinational operators with arity (1, 1)
is the matrix product of those two operators.

Two Linear Sequential Operators

It is easy to show that the doubly contracted product is associative. Therefore:

A : (B : s) = (A : B) : s

This means that the composition of two linear sequential operators with arity (1, 1) is the
doubly contracted product of those two operators.

A mix between linear non-combinational and linear combinational operators

The following equalities are easy to check:

A · (B : s) = (A ·B) : s

A : (B · s) = (A ·B) : s

This means that the composition of a mix of linear non-combinational and combinational
operators with arity (1, 1) is the simply contracted product of those two operators. The
resulting operator is a non-combinational one.

Examples

• We denote
Pl,h = Dl : Th

Now, let O be any combinational operator. Then, Pl,h ◦ O is the operator that

performs O every h cycles with a latency of l cycles. For instance:

P4,2 ·DFTN

represents the pipelined version of the DFT that has a throughput of one DFT per
2 cycles, and a latency of 4.

2.3.4 Kronecker Product

The Kronecker product ⊗ is the most important higher order operator. It is de�ned as
follows for arity (1, 1) linear combinational operators:

A⊗B = [ai,jB], A = ai,jei � ej

12



2.4 Rules

In the case where A = In, we have :

In ⊗B =

B . . .
B


In this case, B is applied to a concatenation of n input schedules.
OL extends this to more general combinational operators. We de�ne the same way

the Kronecker product of a multi-linear operator A : Rp × Rq → Rr and any sequential
operator B :Mm,T (R)×Mn,T (R)→Mk,T ′(R) :

(A⊗B)(x, y) = A(ei, ej)⊗B
(
(e0 � ei)⊗ Im) · x), (e0 � ej)⊗ In) · y)

)
This de�nition holds for any combinational operator using the way we de�ned their

action on schedules.
Intuitively, a Kronecker product works as follows: the input schedules are blocked

horizontally into p (resp. q) schedules of m (resp. n) rows. Then, A controls the way
these sub-schedules are fed to several instances of B, and how the chunks of schedules
produced have to be combined. Note that nothing changed in the temporal dimension.

2.4 Rules

Now that we have de�ned the elements that compose a formula, we will de�ne the way
we manipulate them.
A rewriting rule R is an application that takes a formula, searches for a given pattern

in this formula, and replaces it with an equivalent expression. In the case where the
given pattern appears several times, only the �rst one (at the lowest level of the formula)
encountered is replaced. For instance, the rule:

MMM0,1
1,1,1 → D1 ◦MUL

replaces the �rst occurrence ofMMM0,1
1,1,1 in a formula by the expanded versionD1◦MUL.

A pattern can contain variables. In this case, those variables are replaced in the re-
placement formula:

Ii ◦ Expr → Expr

The above rule cleans a formula by removing one eventual useless identity operator. Table
2.2 shows some similar rules used to clean up formulas.
Rules can be composed. We denote CR the set of cleaning rules applied in sequence.
If, for any formula, the same rule R applied several times returns the same formula

after a certain time, we denote R∞ the corresponding application. This is the case if the
replacement formula does not contain the pattern. For instance,

(I1 ⊗ Expr → Expr)∞

will remove all Kronecker products where the left term is I1 from a formula.

To generate an implementation, the generator takes a kernel description, applies a set of
breakdown rules on it until it has a terminated formula. The set of breakdown rules that
we use for MMM is described in the next chapter. After each application of a breakdown
rule, CR∞ is applied on the resulting formula.

13



2 Operator Language for Schedules

First cleaning rule set

Removal of useless kronecker products :
I1 ⊗ Expr → Expr

Ii ⊗ Ij → Iij

Removal of useless identity operators :
Ii ◦ Expr → Expr

Expr ◦ Ii → Expr

Expr ◦
(
Ii × Ij

)
→ Expr(

Ii × Ij
)
◦ Expr → Expr

Factorisation of cross product :
(A×B) ◦ (C ×D)→ (A ◦ C)× (B ◦D)

Table 2.2: Cleaning rules
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3 Matrix-Matrix Multiplication in

Verilog

3.1 Formula to Verilog

Before going further, we have to de�ne what is a terminated formula for Verilog. In other
words, we have to list the operators that can be translated to verilog, and to describe how
the operations on operators work.

3.1.1 Composition

When a terminated formula is translated into a Verilog module, composed operators
are simply translated one by one; the output of an operator constitutes the input of the
following operator. The right-most operator receives the module's inputs, and the outputs
of the left-most operators are the module's output.
For instance, the formula A ◦B ◦ C would be translated into:

module mod( input c lk , input i1 , input i2 , output o1 , output o2 ) ;
wire tmp1 ; // output f o r C
C( clk , i1 , i2 , tmp1 ) ; //Operator C

wire tmp2 , tmp3 ; // ou tpu t s f o r B
B( clk , tmp1 , tmp2 , tmp3 ) ; //Operator B

wire tmp4 , tmp5 ; // ou tpu t s f o r C
A( clk , tmp2 , tmp3 , tmp4 , tmp5 ) ; //Operator C

assign o1=tmp4 ; //Assign the output o f C to the module
assign o2=tmp5 ;

endmodule

3.1.2 Combinational Operators

Permutations

Permutations are the simplest operators since they don't involve any verilog code. They
simply change the order of the inputs of the following operator.

Transposition The transposition operator, noted Lmnm is the arity (1,1) permutation

that transposes a m× n matrix (seen as a linearized vector). Therefore:

Lmnm · ei×n+j = ej×n+i

15



3 Matrix-Matrix Multiplication in Verilog

Swap The swap operator, noted SWAP is the arity (2,2) operator that simply exchanges
its inputs:

SWAP
(
x, y
)
=
(
y, x
)

Multiplier

A multiplier is an arity (2,1) operator that simply multiplies two scalars. It is noted
MMM1,1,1:

MMM1,1,1(a, b) = ab

Its implementation is straightforward:

assign out = in1 ∗ in2 ;

3.1.3 Sequential Operators

D-type Flip-�op

The D-type �ip-�op is the simplest sequential operator. It is represented by the formula:

D1 = ei � et+1 � et � ei

At each cycle, the value returned is the value present at the input during the previous
cycle (cf. Fig. 3.1).

Figure 3.1: Implementation of D1

The corresponding Verilog code is the following:

reg [ 1 5 : 0 ] out ;
always @(posedge c l k )

out <= in ;

Counters and Triggers

The following operators require to receive a signal at a regular time. Therefore, each of
them requires a counter that counts cycles for a given period, and a trigger that �res when
this counter reaches a particular value. However, having one counter for each operator
would wastefully occupy ressources. Similarly, some triggers might �re exactly at the
same time for several operators. Consequently, one global set of counter and triggers is
created when at least one operator requires it.
For instance, let's assume that an operator requires a trigger that �res each cycle

congruent to 0 modulo 4, and another one that needs a signal each cycle congruent to 3
modulo 6. The translator will generate a counter that counts until gcd(4, 6) = 12, one
trigger that �res when the counter reaches the values {0, 4, 8} (in this case, the synthetiser
is intelligent enough to only watch the �rst two bits), and another one for values {3, 9}.
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3.1 Formula to Verilog

When a counter is present in a module, an input signal start appears. This signal
has to be set by the user when he begins to feed the data. This resets the counter and
synchronises all the operators.

reg [ 3 : 0 ] counter ;
always @(posedge c l k )

i f ( s t a r t | | counter == 12)
counter <= 0 ;

else

counter <= counter + 1 ;
assign t0 =

( counter == 0) | |
( counter == 4) | |
( counter == 8 ) ;

assign t1 =
( counter == 3) | |
( counter == 9 ) ;

As the presence of a trigger implies non-trivial additions in the formulas, the next
mathematical de�nitions in this section will not use Einstein's notation.

Memory

The memory operator has one input and one output. It stores its input at cycle ϕ modulo
T , and holds this value at the output until it gets a new one.

MEMϕ,T =
∑

0≤i<T
t≡ϕ[T ]

e0 � et+i � et � e0

Using a trigger t that �res at cycle ϕ modulo T , the Verilog implementation is straight-
forward:

reg [ 1 5 : 0 ] out ;
wire [ 1 5 : 0 ] nextva lue ;
assign nextva lue= t ? in : out ;
always @(posedge c l k )

out <= nextva lue ;

Accumulator

The accumulator is a linear operator with a scalar input and a scalar output. At every
cycle the output value is the sum of the input value and the previous input values since
its last reset. This operator can also work intermittently. A parameter δ speci�es the
number of cycles to wait between every additions. The other cycles are simply skipped:

ACCϕ,T,δ =
∑

0≤i<T
t≡ϕ[Tδ]

e1 � et+Tδ � et+iδ � e1

The Verilog implementation uses two triggers: t0, that �res every cycle ϕ modulo δ,
and t1 every cycle ϕ modulo Tδ.
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3 Matrix-Matrix Multiplication in Verilog

+

Figure 3.2: Implementation of ACC

reg [ 1 5 : 0 ] out ;
wire [ 1 5 : 0 ] var ;
assign var = t0 ? in : out + in ;
always @(posedge c l k )

out <= t1 ? var : out ;

Serializer

The serializer operator is an arity (1,1) linear operator. It takes a dimention n vector as
an input, and has a scalar output. It stores its input at cycle ϕ modulo n · δ, and outputs
its components one after the other during δ cycles:

SERn,ϕ,δ =
∑

0≤i<n
0≤j<δ
t≡ϕ[nδ]

e1 � et+iδ+j � et � ei

The serializer is implemented using a shift register. Once again, two triggers are used
in the Verilog implementation: t1 to wait until the next δ cycle, and t2 to propagate the
values through the next bit. Here is how a 3-inputs serializer would be written:

reg [ 1 5 : 0 ] var1 ;
always @(posedge c l k )

var1 <= t1 ? in0 : var1 ;
wire [ 1 5 : 0 ] var2 ;
assign var2 = t0 ? in1 : var1 ;
reg [ 1 5 : 0 ] var3 ;
always @(posedge c l k )

var3 <= t1 ? var2 : var3 ;
wire [ 1 5 : 0 ] var4 ;
assign out = t0 ? in2 : var3 ;

Deserializer

The deserializer is the opposite of the serializer. It takes a scalar input at every cycle as
part of an input stream. The output is a n-dimentional vector that contains these values.
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3.1 Formula to Verilog

Operator Name De�nition

In Identity Rn → Rn;x 7→ x

Hn Hadamar product Rn × Rn → Rn; (x, y) 7→ xiyiei
Sn Scalar product Rn × Rn → R; (x, y) 7→ xiyi
Km,n Kronecker product Rm × Rn → Rmn; (x, y) 7→ xiyjeij

Table 3.1: Possible left term for a Kronecker product in a terminated formula

As the previous operators, a parameter δ allows to freeze the process during a few cycles:

DESERn,ϕ,δ =
∑

0≤i<n
0≤j<δ
t≡ϕ[δ]

en−i � et+iδ+j � et � e0

The verilog implementation uses a shift register, and only one trigger t1.

reg [ 1 5 : 0 ] var1 ;
always @(posedge c l k )

var1 <= t ? in : var1 ;
reg [ 1 5 : 0 ] var2 ;
always @(posedge c l k )

var2 <= t ? var1 : var2 ;
assign out0 = var2 ;
assign out1 = var1 ;
assign out2 = in ;

3.1.4 Kronecker Products

The Kronecker product is the most complicated operation to implement. Therefore, only
a very limited subset of cases can be translated to verilog. The left term of the Kronecker
product must be in the list given in table 3.1 for a formula to be terminated.
When the translator encounters a Kronecker product, Op ⊗ Expr, it �rst implements

Expr into a new module. Then, this new module is called from the current module
depending on Op:

Identity

If Op = In, the submodule Expr is called n times from the current module, each time

consumming a subset of the inputs and of the outputs.
The example below shows how I3 ⊗ Expr would be translated.

wire [ 1 5 : 0 ] out0 , out1 , out2 ;
Expr ( . c l k ( c l k ) , . i 0 ( in0 ) , . i 1 ( in1 ) , . o ( out0 ) ) ;
Expr ( . c l k ( c l k ) , . i 0 ( in2 ) , . i 1 ( in3 ) , . o ( out1 ) ) ;
Expr ( . c l k ( c l k ) , . i 0 ( in4 ) , . i 1 ( in5 ) , . o ( out2 ) ) ;

1This implementation does not conform to the mathematical de�nition. The output in a cycle that is

not congruent with ϕ modulo nδ is not null. To get a correct implementation, an other trigger and a

AND gate are necessary.
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3 Matrix-Matrix Multiplication in Verilog

Hadamar Product Operator

The Kronecker product with the Hadamar product operator works similarly to the iden-
tity, but with arity (2, 1) expressions. Hn ⊗ Expr calls Expr n times, with components
from the �rst input vector, and the corresponding components from the second input
vector.
The example below shows how H3 ⊗ Expr would be translated.

wire [ 1 5 : 0 ] out0 , out1 , out2 ;
Expr ( . c l k ( c l k ) , . x ( x0 ) , . y ( y0 ) , . o ( out0 ) ) ;
Expr ( . c l k ( c l k ) , . x ( x1 ) , . y ( y1 ) , . o ( out1 ) ) ;
Expr ( . c l k ( c l k ) , . x ( x2 ) , . y ( y2 ) , . o ( out2 ) ) ;

Scalar Product Operator

With the scalar product, the translator will simply implement the Kronecker product with
the Hadamar product, but will sum up the outputs at the end, using:

wire [ 1 5 : 0 ] out ;
assign out = out0 + out1 +out2 ;

Kronecker Product Operator

Lastly, the Kronecker product with the Kronecker product operator. This time, all pos-
sible combinations of the input are used.
A K2,2 ⊗ Expr would be implemented:

wire [ 1 5 : 0 ] out0 , out1 , out2 ;
Expr ( . c l k ( c l k ) , . x ( x0 ) , . y ( y0 ) , . o ( out0 ) ) ;
Expr ( . c l k ( c l k ) , . x ( x0 ) , . y ( y1 ) , . o ( out1 ) ) ;
Expr ( . c l k ( c l k ) , . x ( x1 ) , . y ( y0 ) , . o ( out2 ) ) ;
Expr ( . c l k ( c l k ) , . x ( x1 ) , . y ( y1 ) , . o ( out3 ) ) ;

3.1.5 New Cleaning Rules

The following cleaning rules support the operators described in this section:

3.2 Speci�c Rules for MMM

The MMM algorithm can be blocked in three di�erent ways (cf.Fig. 3.3).

3.2.1 Vertical and Horizontal Blocking

The vertical and horizontal blocking are the easiest to implement. One of the input
matrices is split, and each part is multiplied with the second matrix. The �nal matrix is
obtained by concatenating the results.
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3.2 Speci�c Rules for MMM

Rule Signi�cation

Li1 → Ii Remove useless transpositions

Lii → Ii

Liji · L
ij
j → Iij Transposition is involutive

SER1,i,j → I1 Remove useless serializer

DESER1,i,j → I1 Remove useless deserializer

ACCi,1,j →MEMi,j A one time accumulator is a memory

MEMi,1 → I1 Remove useless memories

SWAP ◦ SWAP → I Swap is involutive

S1 ⊗ Expr → Expr Remove useless kronecker products
K1,1 ⊗ Expr → Expr
H1 ⊗ Expr → Expr

Table 3.2: Additional cleaning rules

=

(a) Horizontal blocking

=

(b) Vertical blocking

=

(c) Depth blocking

Figure 3.3: (From [4]) Blocking matrix multiplication along each one of the three dimen-
sions. For the horizontal and vertical blocking, the white (black) part of the
result is computed by multiplying the white (black) part of the blocked input
with the other, gray, input. For the depth blocking, the result is computed by
multiplying both white parts and both black parts and adding the results.

Parallel Horizontal Blocking

The horizontal blocking shows the power of the Kronecker product in the case of a parallel
implementation. This rules takes a parameter m′, the number of rows that the sub-block
has:

RH,//
m′ :MMMT,δ

m,k,n → Km/m′,1 ⊗MMMT,δ
m′,k,n (3.1)
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3 Matrix-Matrix Multiplication in Verilog

Serial Vertical Blocking

The serial vertical blocking is done with the following rule:

RV,...
n′ :MMM t,δ

m,k,n →



(
Imn′ ⊗DESERn/n′,tn′/n+δ−1,tn′/n

)
◦

MMM
tn′/n,δ
m,k,n′ ◦((

Imk ⊗MEM0,t

)
×

(
Ikn′ ⊗ SERn/n′,0,tn′/n

)) (3.2)

Columns of the right input matrix are serialized while the left one is hold into registers.
After the multiplications, the columns of the �nal matrix are deserialized.

Transposed Product

So far, we have a serial vertical blocking rule RV,...
n′ , and a parallel horizontal blocking rule

RH,//
m′ . A parallel vertical blocking rule and a serial horizontal blocking rule exist, but we

will use instead the fact that:

A ·B = t
(
tB · tA

)
This leads to the rule:

RT :MMMT,δ
m,k,n → Lmnn ◦MMMT,δ

n,k,m ◦ SWAP ◦
(
Lmkm × Lknk

)

As this rule only contains permutations, no additional verilog code will be generated.
Using this rule, and the two previous ones, we obtain all possible horizontal and vertical
blocking rules.

3.2.2 Depth Blocking

The depth blocking is the last kind of blocking. The input matrices are split into columns
for the left one, and into rows for the right one. Then, the columns are multiplied with
the rows. Resulting matrices are added element-wize to form the �nal matrix.

Parallel

The whole parallel depth blocking can be captured by a kronecker product with a scalar
product operator:

RD,//
k′ :MMMT,δ

m,k,n →
(
Sk/k′ ⊗MMMT,δ

m,k′,n

)
◦

(
(L

mk/k′

k/k′ ⊗ Ik′)× Ikn

)
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3.3 Designs for MMM

Serial

The corresponding serial rule is:

RD,...
k′ :MMM t,δ

m,k,n →



(
Imn ⊗ ACCtk′/k+δ−1,k/k′,tk′/k

)
◦

MMM
tk′/k,δ
m,k′,n ◦((

Imk′ ⊗ SERk/k′,0,tk′/k

)
×(

Lnk
′

n ·

(
Ink′ ⊗ SERk/k′,0,tk′/k

)
· Lknk

))

This rule serializes columns from the left input matrix, and rows from the right one. Those
corresponding blocks are then multiplied together before being summed up to obtain the
result.

3.3 Designs for MMM

3.3.1 Scalar Product

Before considering designs that compute a general MMM, let's �rst consider scalar prod-
ucts (i.e. MMM1,k,1).

Adder tree

A scalar product can be performed by using only the rule RD,//
1 . If we use it to perform

a scalar product of two 4-dimentions vectors, we get the formula (after cleaning):

MMM1,0
1,4,1 ← S4 ⊗MMM1,0

1,1,1

This formula would be translated to the following Verilog code, where MUL is the module
that multiplies i1 with i2 and that returns the result in o1:

. . .
wire [ 1 5 : 0 ] var1 ;
MUL MUL1( . i 1 (A_1_1) , . i 2 (B_1_1) , . o1 ( var1 ) ,

. c l k ( c l k ) , . r s t ( r s t ) ) ;
wire [ 1 5 : 0 ] var2 ;
MUL MUL2( . i 1 (A_1_2) , . i 2 (B_2_1) , . o1 ( var2 ) ,

. c l k ( c l k ) , . r s t ( r s t ) ) ;
wire [ 1 5 : 0 ] var3 ;
MUL MUL3( . i 1 (A_1_3) , . i 2 (B_3_1) , . o1 ( var3 ) ,

. c l k ( c l k ) , . r s t ( r s t ) ) ;
wire [ 1 5 : 0 ] var4 ;
MUL MUL4( . i 1 (A_1_4) , . i 2 (B_4_1) , . o1 ( var4 ) ,

. c l k ( c l k ) , . r s t ( r s t ) ) ;
wire [ 1 5 : 0 ] var5 ;
assign var5 = var1 + var2 + var3 + var4 ;

. . .
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3 Matrix-Matrix Multiplication in Verilog

The way the additions of the last line are implemented depends on the synthetiser. Two
scenarios may happen:

• The synthetiser can group one adder with one multiplier to form a MADD (to reduce
the number of DSP slices used) (cf. Fig. 3.3.1). In this case, k DSP slices would be
used, but the longest path would go through all k MADDs.

x0

y0

x1

y1

x2

y2

x3

y3

×

×+

×+

×+out

Figure 3.4: Design with MADDs

• The synthetiser can choose to produce an adder tree (cf. Fig. 3.3.1) to reduce the
longest path. The drawback is that half of the multipliers cannot be grouped with
an adder, resulting in an increased use of k/2 DSP slices. However, the longest path
is better: one multiplier, one MADD, and log2(k)− 1 adders.

x0

y0

x1

y1

x2

y2

x3

y3

×

×+

×+

×

+out

Figure 3.5: Design with an adder tree
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3.3 Designs for MMM

To increase the frequency of operation, the adder tree could be made explicit and �ip
�ops could be added to create a pipeline. However, in this case, the number of DSP slices
used would still be high.

Cascaded MADDs

A correct way of improving the performance of a scalar product is to pipeline the �rst sce-
nario (cf Fig. 3.3.1). To do that, we introduce two new operators, CASC and CASCADD:

x0

y0

x1

y1

x2

y2

x3

y3

×D1

D1

D1×+D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

×+D1

×+out

Figure 3.6: Design with cascaded MADDs

Cascader A cascader is an arity (1,1) linear operator that delays its inputs according to
their position. A parameter δ indicates the number of cycles to delay the i + 1-th input
over the i-th:

CASCn,δ = ei � et+δ·i � et � ei

The Verilog implementation uses only D-type �ip-�ops. A CASC2,2 will be implemented

as follows:

reg [ 1 5 : 0 ] var1 ;
always @(posedge c l k )

var1 <= in1 ;
reg [ 1 5 : 0 ] out1 ;
always @(posedge c l k )

out1 <= var1 ;

reg [ 1 5 : 0 ] var3 ;
always @(posedge c l k )

var3 <= in2 ;
reg [ 1 5 : 0 ] var4 ;
always @(posedge c l k )
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3 Matrix-Matrix Multiplication in Verilog

var4 <= var3 ;
reg [ 1 5 : 0 ] var5 ;
always @(posedge c l k )

var5 <= var4 ;
reg [ 1 5 : 0 ] out2 ;
always @(posedge c l k )

out2 <= var5 ;

Cascade adder The second operator we introduce is the cascade adder. It is an arity
(1,1) linear operator that takes a n-dimentional vector and that outputs a scalar:

CASCADDn,δ = e0 � et � et−δi � ei

The Verilog implementation uses �ip-�ops and adders. A CASCADD2,2 is implemented:

reg [ 1 5 : 0 ] var1 ;
always @(posedge c l k )

var1 <= in1 ;
reg [ 1 5 : 0 ] var2 ;
always @(posedge c l k )

var2 <= var1 ;
wire [ 1 5 : 0 ] out ;
assign out = var2 + in2 ;

Note that even if those two operators are sequential operators, they do not use any
trigger. Therefore, no counter has to be produced.

Rule To use the two new operators, we introduce the rule:

RC :MMM1,δ
1,k,1 → CASCADDk,δ/k ◦

(
Hk ⊗MMM1,0

1,1,1

)
◦

(
CASCk,δ/k × CASCk,δ/k

)
This rule builds a scalar product with a gap of 1 cycle, and a variable latency of δ cycles.

Pipeline The DSP slices that perform the operations can be internally pipelined. It is
possible to indicate to the synthesiser that we want such a behavior by placing �ip-�ops
on the operator's output. With RC , this is exactly what happens when δ > 1. For the
adder tree, we introduce the rule:

RP :MMM1,δ
1,1,1 → Dδ ◦MMM1,0

1,1,1

We have two di�erent ways to perform a scalar product (cf. Table 3.3).

3.3.2 General MMM

Parallel MMM

A general MMMm,k,n can be done by computing mn scalar products in parallel. This
can be done by using RH,//

1 , and RT ◦ RH,//
1 ◦ RT before a scalar product rule.

This method produces the most performant MMM (with a gap of 1 cycle), but consumes
a high number of DSP slices.
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3.3 Designs for MMM

Name De�nition Description

RC RC Cascaded adder
RA RP ◦ RD,//

1 Pipelined adder-tree

Table 3.3: Two families of scalar products

Family name Kernel implemented De�nition

Eml MMM
mkn
xyz

,p

m,k,n RA ◦ RH,//
1 ◦ RT ◦ RH,//

1 ◦ RD,...
z ◦ RV,...

x ◦ RT ◦ RV,...
y

Clr MMM
mkn
xyz

,pz

m,k,n RC ◦ RH,//
1 ◦ RT ◦ RH,//

1 ◦ RD,...
z ◦ RV,...

x ◦ RT ◦ RV,...
y

Apo MMM
mkn
xyz

,p

m,k,n RA ◦ RH,//
1 ◦ RT ◦ RH,//

1 ◦ RV,...
x ◦ RT ◦ RV,...

y ◦ RD,...
z

AG MMM
mkn
xyz

,pz

m,k,n RC ◦ RH,//
1 ◦ RT ◦ RH,//

1 ◦ RV,...
x ◦ RT ◦ RV,...

y ◦ RD,...
z

Table 3.4: Design families for MMM

Serialisation

To compute large MMMs with a limited amount of DSP slices, a good option is to block
it into several sub-MMM, and to use the same circuitry to compute these sub-MMM one
after the other. This can be done by using RV,...

x , RD,...
z and RT before the rules that

produce a parallel MMM.

Design families

In the next chapter, we will explore four design families (see Table 3.4). Each of these
families takes 4 parameters, x, y, z and p. x, y and z are used to serialy block the
MMM into a MMMx,y,z, and therefore must be divisors of m,k and n, respectively. The
parameter p is used to specify a pipeline depth. Also it can take any integer value, we
will only explore N4.
The di�erence between those families are the following:

• Eml and Apo use an adder-tree based scalar product, while Clr and AG use a
cascaded scalar product.

• Eml and Clr perform the depth serialisation after the vertical and horizontal serial-
isation, Apo and AG after.

The number of cycles to wait before feeding new matrices, thegap, and the additional
latency required by each design is indicated in the "Kernel implemented" column in Table
3.4.
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4 Results

4.1 Experimental Setup

The design space we generated was synthesised for a Xilinx xc6vlx75t-�484-1. This FPGA
contains 11640 slices, that can be used for general purpose logic, and 288 DSP48e1,
that contain hard-wired circuitry to perform operations that would require a lot of slices
otherwise like additions, multiplications, or both.
Therefore, we used the Xilinx toolchain using the following script:

echo ' run −move_first_stage no −move_last_stage ' > mmm. xst
echo ' no − i f n mmm. v −i fmt Ver i l og ' >> mmm. xst
echo '−ofn mmm. ngc −i obu f no −ofmt ' >> mmm. xst
echo 'NGC −p xc6vlx75t−f f 484−1 −top wrapper ' >> mmm. xst
xst − i f n mmm. xst
map −u −t iming −o l high −xe n −t 1 −xt 0 mmm. ngd
par mmm out −o l high −xe n
t r c e −a out

4.2 Synthesis architecture

The synthesis is the most time consuming stage of the process (a MMM16,16,16 can take
up to 15 hours on an Intel Xeon(R) X5680 @3.33GHz with 141GB of RAM. Therefore,
we used a distributed architecture composed of:

• A server selects a design to test, generates the corresponding verilog code, and sends
it to the clients using a web server. It also runs a database where it stores the results
sent by the clients. A web interface is also provided to allow the customer to pick
his design.

• Clients download the Verilog code from the server, run the synthesis, and upload
the results (maximum frequency, number of slices used, logs) to the server.

4.3 Scalar Products

We �rst focus on scalar products performances. Fig. 4.1 shows the maximum frequency
of a scalar product as a function of the input width (k). Here, no serialisation is applied;
only the rules RA and RC are used with di�erent level of pipeline.
As expected, the maximum frequency of the adder tree (RA) decreases with the input

size. With no pipeline, this value decreases from 180MHz (k = 2) to 12MHz (k = 48).
With a 3-levels pipeline, the maximum frequency is 8 times higher.
The cascaded MADDs shows a maximal frequency nearly constant until k = 32 (the

longuest path is constant in this case). Then, it starts decreasing, probably because
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Scalar products
Maximum frequency [Hz]

2 4 6 8 10 20 40 60 80 100 200

Input size (k)

1 M

10 M

100 M

1 G

10 G

Rc p=3

Rc p=2
Rc p=1

Ra p=2Ra p=1

Ra p=0

Figure 4.1: Performance of scalar products

of placement di�culties. Once again, the pipeline level plays an important role. A
1-pipelined cascaded scalar product runs at 180MHz, while a 3-pipelined one runs at
672MHz.

4.4 In�uence of the complexity

The maximum frequency over all designs obtained for MMM of square matrices is shown
on Fig. 4.2.

Maximum frequency vs complexity for square MMM
Maximum frequency [Hz]

1 10 100 1,000 10,000

Complexity (n³)

100 M

200 M

400 M

600 M

800 M

1 G

2 G

AG

Clr Apo

Eml

Figure 4.2: Frequency vs complexity

The maximum frequency obtained decreases with the complexity, even for designs which
scalar product had a steady frequency until k = 32. However, it is noticeable that the
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4.5 MMM of square matrices

designs that use the cascaded MADDs (Clr, AG) have a higher frequency. This lends
weight to the idea that it is the placement and route step that limits the highest achievable
frequency.
Fig.4.3 shows the maximum performance obtained over all designs for a MMM of square

matrices.

Performance vs complexity for square MMM
Performance [fxop/s]

1 10 100 1,000 10,000

Complexity (n³)

100 M

1 G

10 G

100 G

1 T

AG Clr

Apo Eml

Figure 4.3: Performance vs complexity

The maximum performance increases until n = 6, which corresponds to a complexity of
216 multiplications and additions. Until this point, all of the DSP48e1 that are available
on the FPGA are not used. Therefore, the more the complexity increases, the more DSP
slices are used, and the better the performance is. The designs that use the cascaded
MADDs have better performance, probably because of a higher frequency.

4.5 MMM of square matrices

In this section, we show the design space generated for some MMM problems. For a
MMMm,k,n, each design family provides 4 × D(m) × D(k) × D(n), where D(x) is the
number of divisors of x. Therefore the following formula gives the number of designs
generated:

16×D(m)×D(k)×D(n)

The interesting characteristics of a design are its maximal frequency, its performance
(the number of MMM it can compute in a second), the number of DSPs and the number
of slices it uses.
Some design are better than others: they have a better performance than every designs

that use less slices and less DSPs. Those designs form the Pareto set of the problem. If
a design A is a Pareto optimum, we have for any design B:

Performance(B) > Performance(A)⇒ #Slices(B) > #Slices(A) or #DSP(B) > #DSP(A)
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4 Results

4.5.1 2x2

Fig. 4.4 and 4.5 show the generated design space for a kernel that multiplies two 2 ×
2 matrices. The Pareto points (black circle) represent the designs that are the most
performant for a given number of slices and DSPs.

MMM 2x2x2 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 4 DSP48E1s 8 DSP48E1s Pareto optimum

0 20 40 60 80 100 120 140

Number of Slices

200 M

400 M

600 M

800 M

Figure 4.4: MMM 2x2x2 performances

MMM 2x2x2 design space
Frequency[Hz]

Eml Apo Clr AG 1 DSP48E1 4 DSP48E1s 8 DSP48E1s Pareto optimum

0 20 40 60 80 100 120 140

Number of Slices

200 M

400 M

600 M

800 M

Figure 4.5: MMM 2x2x2 maximum frequencies

The frequencies vary between 150 and 600MHz. Some designs output matrices at the
same speed: the ones that use 8 DSPs. In this case, the computation is fully done in
parallel, and the gap of the kernel is 1. For the others, the frequency at wich matrices are
output is divided by 2 or by 4, depending on the serilization used.
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4.5 MMM of square matrices

As an MMM2,2,2 requires only 2-inputs scalar products, the di�erence of performance
between the families that use di�erent scalar products is not important: every design
family is represented in the Pareto set.

4.5.2 4x4

Fig. 4.6 and 4.9 show the generated design space for a kernel that multiplies two 4 × 4
matrices.

MMM 4x4x4 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 32 DSP48E1s 64 DSP48E1s Pareto optimum

100 150 200 250 300 350 400 450 500 550 600

Number of Slices

100 M

200 M

300 M

Figure 4.6: MMM 4x4x4 design space

MMM 4x4x4 design space
Frequency[Hz]

Eml Apo Clr AG 1 DSP48E1 32 DSP48E1s 64 DSP48E1s Pareto optimum

100 150 200 250 300 350 400 450 500 550 600

Number of Slices

100 M

200 M

300 M

400 M

Figure 4.7: MMM 4x4x4 maximum frequencies

The frequency range is lower, they vary between 75 and 380MHz. The di�erence be-
tween the di�erent scalar products begin to appear; most of the Pareto points are from the
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AG and Clr families. The other families are only represented in highly serialized designs
(with small scalar products).

4.5.3 8x8

Fig. 4.8 and 4.9 show the generated design space for a kernel that multiplies two 8 × 8
matrices.

MMM 8x8x8 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 128 DSP48E1s 256 DSP48E1s Pareto optimum

750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250

Number of Slices

25 M

50 M

75 M

100 M

Figure 4.8: MMM 8x8x8 design space

MMM 8x8x8 design space
Frequency[Hz]

Eml Apo Clr AG 1 DSP48E1 128 DSP48E1s 256 DSP48E1s Pareto optimum

750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250

Number of Slices

50 M

100 M

150 M

200 M

250 M

300 M

Figure 4.9: MMM 8x8x8 maximum frequencies

The frequency range is once again lower, between 45 and 240 MHz. Except for highly
serialised designs, the Pareto points come from the families that use theRC scalar product.
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4.5 MMM of square matrices

4.5.4 16x16

Fig. 4.11 and 4.10 show the generated design space for a kernel that multiplies two 16×16
matrices. Here, designs with low level pipeline (< 2) are not displayed.

MMM 16x16x16 design space
Frequency[Hz]

Eml Apo Clr AG 1 DSP48E1 128 DSP48E1s 256 DSP48E1s Pareto optimum

4k 5k 6k 7k 8k 9k 10k

Number of Slices

50 M

100 M

150 M

200 M

Figure 4.10: MMM 16x16x16 maximum frequencies

MMM 16x16x16 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 128 DSP48E1s 256 DSP48E1s Pareto optimum

4k 5k 6k 7k 8k 9k 10k

Number of Slices

2.5 M

5 M

7.5 M

10 M

12.5 M

Figure 4.11: MMM 16x16x16 design space

Once again, Clr and AG are the best design families. As we removed low pipelined
designs, the frequencies are mostly grouped around 120MHz. There is a quantization
of the performances: as the frequencies become uniform, the only value that pilots the
performance is the gap, an integer.
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4.6 Non-Square Matrices

Our generator is able to generate non-square and/or non-power of 2 matrices. Fig. 4.12
shows the design space for an MMM that will multiply a 4×5 matrix with a 5×7 matrix.

MMM 4x5x7 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 70 DSP48E1s 140 DSP48E1s Pareto optimum

300 350 400 450 500 550 600 650 700 750 800 850 900 950

Number of Slices

50 M

100 M

150 M

200 M

250 M

Figure 4.12: Performance of an MMM 4x5x7

As 5 and 7 are prime numbers, the number of designs is smaller than for other designs.

4.7 Limited Frequency

In the case where the MMM design shares its clock with another circuitry, it may not be
possible for it to run at its full frequency. Fig.4.13 shows the case of anMMM8,8,8 limited
to 100MHz. The quantization of the performance appears once again. In this case, the
in�uence of the scalar product used is inversed. Cascaded products with high pipeline
tend to use more logic slices than the other designs, with no bene�t since the maximum
frequency does not count. Therefore, the Pareto set contains designs from all families.
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4.7 Limited Frequency

MMM 8x8x8 design space
Performance [MMM/s]

Eml Apo Clr AG 1 DSP48E1 128 DSP48E1s 256 DSP48E1s Pareto optimum

750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 3,250

Number of Slices

10 M

20 M

30 M

40 M

50 M

60 M

Figure 4.13: MMM 8x8x8 limited to 100MHz
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5 Conclusion

In this thesis, we presented a way to automatically generate designs that perform MMM
on an FPGA. The produced design space is then synthesised to collect the characteristics
of each design. Finally, given a set of constraints, a user can choose the most appropriate
design to perform an MMM operation.
In this document, we considered only the case of MMM, and Verilog implementations.

It is possible to use the formalism described here for other kernels and platforms where
time and/or reuse plays an important role. However, the following improvements can be
considered: A real operator is always periodic, and this doesn't appear in the de�nitions we
used here. It would be interesting to quotient the space of operators over the equivalence
relation "has the same gap". It would then be possible to de�ne a Kronecker product
that takes a sequential operator as a left term and that does what we would expect it
to do: describe how the right operator should be (re)used both in time and space (this
would avoid the dissimetry we currently have between the "parallel rules" and the "serial
rules"). This extended Kronecker product could also be used to describe easily assymetric
algorithms (in the case a GPGPU is used simultaneously with a CPU for instance).
Another enhancement for our generator would be to handle correctly the case where

the input matrices and/or the output matrix are streamed. In fact, we supposed that
both of the input matrices and the output matrix were completly provided in one cycle.
It is possible to handle streaming by using speci�c operators in the starting formula:

I2 ⊗ SER2,1,1 ◦MMM1,0
2,2,2 ◦

((
I2 ⊗DESER2,0,1

)
×
(
I2 ⊗DESER2,0,1

))
If the above formula is used as a starting kernel, it will generate a streamed MMM2,2,2

with a streaming factor of 2. However, this solution is inelegant in the sense that the
generated kernel will wait to have the whole input matrices to begin the computation,
and will begin the streaming of the output once the computation is done. A correct way
to handle it would be to use a systematic way to implement streaming permutations with
registers, as described in [8].
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