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I. INTRODUCTION

The algorithms for many important building blocks in

embedded applications share a common network structure

consisting of stages of small processing elements, separated by

permutations. Examples include fast Fourier transforms (FFTs,

see Fig 1a) and sorting networks (SNs, see Fig. 1c), built from

butterflies and 2-input sorters, respectively. The symmetries in

this structure can be used to fold these algorithms into compact

designs that trade throughput performance for lower hardware

resource usage [1] (see Fig. 1b). Extensive work has been

performed on building generators that output an associated

space of relevant designs in the form of RTL-Verilog [2], [3],

[4], [5]. One key idea is the use of domain-specific languages

(DSLs) to represent network structures [2], [3].

However, the flexibility needed in these generators remains

a challenge. Besides different network variants and degrees of

folding, various hardware number representations can be used,

from fixed-point to floating-point arithmetic using FloPoCo [6]

with variable precision width. Additionally, different methods

exist to implement the streaming permutations needed in

folded networks [7], [8], [9].

The generator we present here, originally proposed in [10],

[11], uses a principled, modular design to offer this flexibility.

It leverages features of the multi-paradigm language Scala

and lightweight modular staging (LMS) [12] to implement

different levels of DSLs and associated optimizations. Staging

means delayed computation and is achieved through type

constructors. If applied to a DSL, execution yields an expres-

sion tree that can be manipulated for optimization. Staging

used in the implementation of the twiddle factors allows

seamless integration of parts that are precomputed and parts

that are computed in hardware. This division naturally occurs

in various degrees due to the space of folding options.

II. GENERATION PIPELINE

Our generator produces state-of-the-art hardware designs

in a sequence of steps. It receives as input the desired

computation and its size, along with parameters that define

the desired type of folding, and outputs the corresponding

design in the form of RTL Verilog. The generation consists of

three layers pictured in Fig. 2. Each of these layers employs

a DSL to represent and optimize the design at different levels

of abstraction. Each DSL is implemented as embedded DSL
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Fig. 1: (a) Radix-2 Pease FFT [13], (b) the same FFT folded

for streaming with 4 ports, and (c) Batcher bitonic sorting

network [14]. All networks process from right to left.
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Fig. 2: The different layers of our generator.

inside Scala and staging enables optimizations as mentioned

above. We discuss these layers next.

III. SPL

The first step consists of choosing a suitable algorithm, i.e.,

network structure. The algorithm is represented in SPL as done
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in [2]. As an example, the radix-2 Pease FFT shown in Fig. 1a

corresponds to the decomposition for n = 3.

DFT2n = R2n

n−1∏

j=0

(Tn−j−1 · (I2n−1 ⊗DFT2) · L2n) . (1)

In this expression, L2n and R2n are permutations (the perfect-

shuffle and the bit-reversal, respectively), Tj is a diagonal

matrix that performs element-wise complex multiplications

with the twiddle-factors, and I2n−1 ⊗ DFT2 represents 2n−1

parallel butterflies (each an addition and a subtraction). Our

implementation of this DSL inside Scala is similar as done in

[15] for software.

IV. STREAMING BLOCK DSL

In the second step of the generator, the SPL expression is

formally folded (as in Fig. 1b). This includes inserting the

necessary datapaths for the streaming permutations from [7],

which uses stages of RAM banks, and stages of switching

networks. The DSL used thus expands SPL to include the

streaming width (similar to the so-called Hardware-SPL in

[2]), but also the needed streaming permutation blocks (array

of switches and memory block). During this stage, a set of

rewriting rules is used to simplify the streaming blocks.

V. STREAMING-RTL DSL

In the final stage, the streaming blocks are transformed into

a dependency graph where each node, called a signal, repre-

sents a hardware operator that outputs one value per cycle. The

graph is constructed and represented using a Streaming-RTL
DSL. This DSL offers the following features:

• The nodes of the graph are manipulated exactly as the

values they would represent in a regular Scala program.

Only their type changes.

• The language provides genericity over the actual hard-

ware datatype and precision. However, the datatype can

be made explicit, offering bit-accurate control.

• Pipelining and synchronization of data-independent con-

trol is performed implicitly, but timing information and

manual pipelining remains available.

• Signals that can be evaluated at generation time are

automatically simplified during the generation (staging),

thus sparing hardware resources.

As an example, the implementation of the streaming block

for the twiddles Tj can be written within a few lines, and

works for every folding scenario and hardware number repre-

sentation. The type constructor Sig controls the staging:

def T(inputs: Vector[Sig[Complex[Double]]], j: Sig[Int])
(implicit dt: HW[Complex[Double]]) = {
// We first declare a timer
// that ticks for the duration of a dataset
val timer = Timer(1 << t)

// we define a (non-staged) Vector containing
// all 2ˆn th roots of unity
val rootsOfUnity = Vector.tabulate(1 << n){i =>
val angle = -2 * Math.Pi * i / (1 << n)
Complex(Math.cos(angle), Math.sin(angle))}

// For each input signal,

inputs.zipWithIndex.map{case (input, p) =>
// we construct a signal corresponding to the index
// of a given element (concatenation of the t bits
// of the timer, and the k bits of the current port p),
val i = timer ++ p(Unsigned(k))

// we compute the corresponding twiddle factor,
val address = (i & 1) * ((i >>> (j + 1)) << j)
val twiddle = rootsOfUnity(address)

// and we return the product of the input signal
// with this twiddle factor
input * twiddle

} }

As can be seen, only a few elements in the body of this

function (Timer, Unsigned) may indicate that this code

represents a low-level hardware architecture. This improves

its readability and therefore its maintainability. However, all

signals implicitly carry an underlying hardware type, and

timing information. In the case of a streaming design (Fig. 1b),

a ROM is generated to store twiddle values, while a single

constant would be used for unfolded designs (Fig. 1a). All

operations are bit- and cycle-accurate, and software and hard-

ware type-safety is ensured.
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