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I. INTRODUCTION

A fully parallel hardware implementation of algorithms on

large data sets is usually impossible due to the resources

it requires. Therefore, the corresponding datapaths need to

be folded into a streaming architecture, which accepts the

input over several cycles. Particularly suited for folding are

regular algorithms such as the fast Fourier transform [1], Viterbi

decoding, or sorting networks [2]. An example of the latter for

23 = 8 elements is shown in Fig. 1(a) and an associated folded

version with streaming width 2k = 4 in Fig. 1(b). The folded

version halves the number of two input sorters S2 needed for

its implementation [3].

Some permutations are trivial to fold due to their spatial

periodicity (e.g., the two rightmost permutations in Fig.1(a)).

However, in general, implementing a streaming permutation
is challenging, as it requires both routing between ports and

delays across cycles. In this short paper we overview our work

on deriving optimal streaming circuits for the subclass of linear
permutations (that we define), which include those needed in

the applications mentioned above. We assume only 2-by-2

switches and dual-ported RAMs as building blocks, which is

well-suited for FPGAs.

Methods to design streaming circuits for arbitrary permuta-

tions exist [5], [6], but are thus more costly for linear permuta-

tions than our method. Optimal register-based implementations

for the specific class of stride permutations and bit reversal

(which are linear) have been designed in [7].
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Fig. 1. Dataflow (right to left) of a sorting network for 23 elements (from
[4]).

II. LINEAR PERMUTATIONS

We consider permutations π on 2n elements with indices

{0, 1, . . . , 2n − 1}. A permutation π is linear [8], if it can be

expressed as a linear mapping of the bit representation of the

element indices. In other words, there exists an invertible n×n
bit matrix P (or, mathematically, P ∈ GLn(F2))), such that

for 0 ≤ i < 2n,

π(i) = j ⇔ jb = P · ib, (1)

where ib, jb are the bit representations of i, j, respectively (as

column vectors). The most significant bit is at the top. In the

case of (1) we write π = π(P ).
As an example, writing in binary the indices for the central

permutation in Fig. 1(a) yields(
0
0
0

)
�→
(

0
0
0

)
,
(

0
0
1

)
�→
(

0
1
0

)
�→
(

1
0
0

)
�→
(

1
1
1

)
�→
(

0
0
1

)
,(

0
1
1

)
�→
(

1
1
0

)
�→
(

0
1
1

)
, and

(
1
0
1

)
�→
(

1
0
1

)
.

This permutation is linear with associated matrix

P =

(
1 1
1 1
1

)
.

A special class of linear permutations are bit-index permu-

tations, meaning that P itself is again a permutation. These

include the stride permutations and the bit reversal.

Our goal is to implement a given π = π(P ) on 2n data with

streaming width 2k, k ≤ n, using only 2-by-2 switches and

dual-ported RAMs. We solve the problem by considering only

P . To do so, we first block P according to k:

P =

(
P4 P3

P2 P1

)
, with P1 of size k × k. (2)

Under these assumptions, the following lower bound holds [4]:

Theorem 1. A full-throughput streaming implementation for
a linear permutation π(P ) with 2k ports that only uses 2×2-
switches for routing requires at least rkP2 ·2k−1 many switches
(rkP2 = rank of P2).

If P is of the special form

P =

(
It
P2 P1

)
, (3)
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Fig. 2. Two possible architectures for a streaming permutation (from [4]).

then π(P ) is spatial [9]: it permutes only across ports and

no memory is required. [10] gives a method to implement it

using a switching network (SNW) with the minimal number

of rkP2 · 2k−1 switches.

If P is of the special form

P =

(
P4 P3

Ik

)
, (4)

then π(P ) is temporal [9]: it permutes only across cycles, and

can be implemented using an array of 2k banks of RAM with

a capacity of at most 2n−k elements per bank.

III. IMPLEMENTING A GENERAL LINEAR PERMUTATION

We build optimal circuits for linear permutation by factor-

izing P into spatial (3) and temporal (4) matrices using the

property π(P ) ◦ π(Q) = π(PQ) [9], [10], [4]. Three such

matrices always suffice; thus there are two choices depicted in

Fig. 2: SNW/RAM/SNW and RAM/SNW/RAM.

The first choice corresponds to the factorization

P =

(
It
L2 L1

)(
M4 M3

Ik

)(
It
R2 R1

)
, (5)

which requires (rkL2+rkR2)·2k−1 switches (Theorem 1) and

has to be minimized. [11] provides the following lower bound

and an algorithm to construct the associated factorization:

Theorem 2. Given P as in (2), then any factorization (5)

satisfies

rkL2 + rkR2 ≥ max(rkP2, n− rkP4 − rkP1).

Thus, if rkP2 ≥ n− rkP4− rkP1 the algorithm [11] achieves

the lower bound in Theorem 1. In the opposite case the second

choice of factorization (RAM/SNW/RAM)

P =

(
L4 L3

Ik

)(
It
M2 M1

)(
R4 R3

Ik

)
. (6)

achieves the minimum number of switches, but at the price

of twice the RAM. In this case the following theorem yields

optimality. The factorization is again obtained with [11]:
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Fig. 3. Comparison of our two structures for a bit-reversal permutation on
2048 16-bit elements for different multiplexer sizes vs. [5] and [10]. Labels:
number of BRAM tiles.

Theorem 3. Given P as in (2), then any factorization (6)

satisfies
rkM2 = rkP2.

IV. RESULTS

As a proof of concept, we compare in Fig. 3 our two

structures on an FPGA for a bit-reversal against the general

method proposed in [5]. For the same throughput, we observe

a significantly reduced area consumption, even more so if

additional RAM is invested.
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[8] J. Lenfant and S. Tahé, “Permuting data with the Omega network,” Acta
Informatica, vol. 21, no. 6, pp. 629–641, 1985.

[9] K. J. Page and P. M. Chau, “Folding large regular computational graphs
onto smaller processor arrays,” in Proc. SPIE, vol. 2846, 1996, pp.
383–394.
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