
Optimal Streamed Linear Permutations
(Invited Paper)

François Serre
Department of Computer Science

ETH Zurich

serref@inf.ethz.ch

Markus Püschel
Department of Computer Science

ETH Zurich

pueschel@inf.ethz.ch

I. INTRODUCTION

A fully parallel hardware implementation of algorithms on

large data sets is usually impossible due to the resources

it requires. Therefore, the corresponding datapaths need to

be folded into a streaming architecture, which accepts the

input over several cycles. Particularly suited for folding are

regular algorithms such as the fast Fourier transform [1], Viterbi

decoding, or sorting networks [2]. An example of the latter for

23 = 8 elements is shown in Fig. 1(a) and an associated folded

version with streaming width 2k = 4 in Fig. 1(b). The folded

version halves the number of two input sorters S2 needed for

its implementation [3].

Some permutations are trivial to fold due to their spatial

periodicity (e.g., the two rightmost permutations in Fig.1(a)).

However, in general, implementing a streaming permutation
is challenging, as it requires both routing between ports and

delays across cycles. In this short paper we overview our work

on deriving optimal streaming circuits for the subclass of linear
permutations (that we define), which include those needed in

the applications mentioned above. We assume only 2-by-2

switches and dual-ported RAMs as building blocks, which is

well-suited for FPGAs.

Methods to design streaming circuits for arbitrary permuta-

tions exist [5], [6], but are thus more costly for linear permuta-

tions than our method. Optimal register-based implementations

for the specific class of stride permutations and bit reversal

(which are linear) have been designed in [7].

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

(a) not streaming

C3 C3 X3

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

(b) streaming with streaming width 2k = 4

Fig. 1. Dataflow (right to left) of a sorting network for 23 elements (from
[4]).

II. LINEAR PERMUTATIONS

We consider permutations π on 2n elements with indices

{0, 1, . . . , 2n − 1}. A permutation π is linear [8], if it can be

expressed as a linear mapping of the bit representation of the

element indices. In other words, there exists an invertible n×n
bit matrix P (or, mathematically, P ∈ GLn(F2))), such that

for 0 ≤ i < 2n,

π(i) = j ⇔ jb = P · ib, (1)

where ib, jb are the bit representations of i, j, respectively (as

column vectors). The most significant bit is at the top. In the

case of (1) we write π = π(P).
As an example, writing in binary the indices for the central

permutation in Fig. 1(a) yields(
0
0
0

)
�→
(

0
0
0

)
,
(

0
0
1

)
�→
(

0
1
0

)
�→
(

1
0
0

)
�→
(

1
1
1

)
�→
(

0
0
1

)
,(

0
1
1

)
�→
(

1
1
0

)
�→
(

0
1
1

)
, and

(
1
0
1

)
�→
(

1
0
1

)
.

This permutation is linear with associated matrix

P =

(
1 1
1 1
1

)
.

A special class of linear permutations are bit-index permu-

tations, meaning that P itself is again a permutation. These

include the stride permutations and the bit reversal.

Our goal is to implement a given π = π(P) on 2n data with

streaming width 2k, k ≤ n, using only 2-by-2 switches and

dual-ported RAMs. We solve the problem by considering only

P . To do so, we first block P according to k:

P =

(
P4 P3

P2 P1

)
, with P1 of size k × k. (2)

Under these assumptions, the following lower bound holds [4]:

Theorem 1. A full-throughput streaming implementation for
a linear permutation π(P) with 2k ports that only uses 2×2-
switches for routing requires at least rkP2 ·2k−1 many switches
(rkP2 = rank of P2).

If P is of the special form

P =

(
It
P2 P1

)
, (3)

2017 IEEE 24th Symposium on Computer Arithmetic

1063-6889/17 $31.00 © 2017 IEEE

DOI 10.1109/ARITH.2017.13

60

SNW SNWMemory block

RAM bank 0

RAM bank 1

RAM bank 2

RAM bank 3

(a) SNW/RAM/SNW

SNWMemory block Memory block

RAM bank 0

RAM bank 1

RAM bank 2

RAM bank 3

RAM bank 4

RAM bank 5

RAM bank 6

RAM bank 7

(b) RAM/SNW/RAM

Fig. 2. Two possible architectures for a streaming permutation (from [4]).

then π(P) is spatial [9]: it permutes only across ports and

no memory is required. [10] gives a method to implement it

using a switching network (SNW) with the minimal number

of rkP2 · 2k−1 switches.

If P is of the special form

P =

(
P4 P3

Ik

)
, (4)

then π(P) is temporal [9]: it permutes only across cycles, and

can be implemented using an array of 2k banks of RAM with

a capacity of at most 2n−k elements per bank.

III. IMPLEMENTING A GENERAL LINEAR PERMUTATION

We build optimal circuits for linear permutation by factor-

izing P into spatial (3) and temporal (4) matrices using the

property π(P) ◦ π(Q) = π(PQ) [9], [10], [4]. Three such

matrices always suffice; thus there are two choices depicted in

Fig. 2: SNW/RAM/SNW and RAM/SNW/RAM.

The first choice corresponds to the factorization

P =

(
It
L2 L1

)(
M4 M3

Ik

)(
It
R2 R1

)
, (5)

which requires (rkL2+rkR2)·2k−1 switches (Theorem 1) and

has to be minimized. [11] provides the following lower bound

and an algorithm to construct the associated factorization:

Theorem 2. Given P as in (2), then any factorization (5)

satisfies

rkL2 + rkR2 ≥ max(rkP2, n− rkP4 − rkP1).

Thus, if rkP2 ≥ n− rkP4− rkP1 the algorithm [11] achieves

the lower bound in Theorem 1. In the opposite case the second

choice of factorization (RAM/SNW/RAM)

P =

(
L4 L3

Ik

)(
It
M2 M1

)(
R4 R3

Ik

)
. (6)

achieves the minimum number of switches, but at the price

of twice the RAM. In this case the following theorem yields

optimality. The factorization is again obtained with [11]:

0

100

200

300

400

500

10 100 1000 10000
Area [slices]

Bit-reversal, 2n = 2048 on Xilinx Virtex-7 FPGA
Throughput [Gbits/s]

32

16

8

64

RAM-SNW-RAM

4
2

32

16

8

4
2

1 2

4

8

16

32

68

34

24

126

SNW-RAM-SNW
[10]

[5]

6

Fig. 3. Comparison of our two structures for a bit-reversal permutation on
2048 16-bit elements for different multiplexer sizes vs. [5] and [10]. Labels:
number of BRAM tiles.

Theorem 3. Given P as in (2), then any factorization (6)

satisfies
rkM2 = rkP2.

IV. RESULTS

As a proof of concept, we compare in Fig. 3 our two

structures on an FPGA for a bit-reversal against the general

method proposed in [5]. For the same throughput, we observe

a significantly reduced area consumption, even more so if

additional RAM is invested.

REFERENCES

[1] M. C. Pease, “An adaptation of the fast fourier transform for parallel
processing,” Journal of the ACM, vol. 15, no. 2, pp. 252–264, Apr. 1968.

[2] D. E. Knuth, The Art of Computer Programming, 2Nd Ed. (Addison-
Wesley Series in Computer Science and Information, 2nd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1978.

[3] M. Zuluaga, P. A. Milder, and M. Püschel, “Streaming sorting networks,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 21, no. 4, 2016.

[4] F. Serre, T. Holenstein, and M. Püschel, “Optimal circuits for streamed
linear permutations using RAM,” in International Symposium on Field-
Programmable Gate Arrays (FPGA). ACM, 2016, pp. 215–223.

[5] P. A. Milder, J. C. Hoe, and M. Püschel, “Automatic generation
of streaming datapaths for arbitrary fixed permutations,” in Design,
Automation and Test in Europe (DATE), 2009, pp. 1118–1123.

[6] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on FPGA,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2015, pp. 240–249.

[7] T. Järvinen, P. Salmela, H. Sorokin, and J. Takala, “Stride permuta-
tion networks for array processors,” in Application-Specific Systems,
Architectures and Processors Proceedings (ASAP), 2004, pp. 376–386.

[8] J. Lenfant and S. Tahé, “Permuting data with the Omega network,” Acta
Informatica, vol. 21, no. 6, pp. 629–641, 1985.

[9] K. J. Page and P. M. Chau, “Folding large regular computational graphs
onto smaller processor arrays,” in Proc. SPIE, vol. 2846, 1996, pp.
383–394.

[10] M. Püschel, P. A. Milder, and J. C. Hoe, “Permuting streaming data
using RAMs,” Journal of the ACM, vol. 56, no. 2, pp. 10:1–10:34, 2009.

[11] F. Serre and M. Püschel, “Generalizing block LU factorization: A lower-
upper-lower block triangular decomposition with minimal off-diagonal

ranks,” Linear Algebra and its Applications, vol. 509, pp. 114–142, 2016.

61

